PENGEMBANGAN ENKAPSULAT NANOEMULSI EKSTRAK KULIT MANGGIS (Garcinia mangostana L.): UJI DISOLUSI IN VITRO DAN AKTIVITAS PENGHAMBATAN ENZIM Α-AMILASE
Development of Nanoemulsion Encapsulated Mangosteen Peel Extract (Garcinia mangostana L.): In Vitro Dissolution and α-Amylase Inhibition Activity
Abstract
This study aims to develop a nanoemulsion encapsulation system for mangosteen peel extract to enhance the stability and bioavailability of its bioactive compounds, primarily xanthones. The research focused on optimizing the ethanol concentration for extraction, the surfactant type for nanoemulsion synthesis, and the encapsulant materials. Encapsulation efficiency, dissolution characteristics, and α-amylase inhibition activity were evaluated to assess its potential for diabetes management. Encapsulation using maltodextrin and gum arab achieved the highest efficiency (97.93%) and antioxidant capacity (572.92 µg AEAC/g). In vitro dissolution tests showed enhanced phenolic release rates in both acidic (94.57%) and alkaline (94.51%) media compared to non-encapsulated extracts. However, the encapsulated extract exhibited slightly lower α-amylase inhibition (74.10%) than the crude extract (78.61%) due to slower bioactive release. These findings suggest that nanoemulsion encapsulation with maltodextrin and gum arab improves the delivery and functionality of mangosteen peel extract, presenting promising applications in functional food development for diabetes management.
References
Deladino, L., Anbinder, P. S., Navarro, A. S., & Martino, M. N. (2008). Encapsulation of natural antioxidants extracted from Ilex paraguariensis. Carbohydrate Polymers, 71(1), 126–134. https://doi.org/10.1016/J.CARBPOL.2007.05.030
Delfanian, M., Razavi, S. M. A., Haddad Khodaparast, M. H., Esmaeilzadeh Kenari, R., & Golmohammadzadeh, S. (2018). Influence of main emulsion components on the physicochemical and functional properties of W/O/W nano-emulsion: Effect of polyphenols, Hi-Cap, basil seed gum, soy and whey protein isolates. Food Research International, 108, 136–143. https://doi.org/10.1016/J.FOODRES.2018.03.043
Dewandari, K. T., Yuliani, S., & Yasni, S. (2013). Ekstraksi dan karakterisasi nanopartikel ekstrak sirih merah (piper crocat um). Jurnal Penelitian Pascapanen Pertanian, 10(2), 58–65. https://doi.org/http://dx.doi.org/10.21082/jpasca.v10n2.2013.58-65
Enin, H. A. A. (2015). Self-nanoemulsifying drug-delivery system for improved oral bioavailability of rosuvastatin using natural oil antihyperlipdemic. Drug Development and Industrial Pharmacy, 41(7), 1047–1056. https://doi.org/10.3109/03639045.2014.983113
Gaspersz, N., & Sohilait, M. R. (2019). Molecular docking of α, β, and γ-mangostin as human α-amylase inhibitor. Indo. J. Chem. Res., 6(2), 59–66. https://doi.org/10.30598//IJCR.2019.6-NEL
Guariguata, L., Whiting, D. R., Hambleton, I., Beagley, J., Linnenkamp, U., & Shaw, J. E. (2014). Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Research and Clinical Practice, 103(2), 137–149. https://doi.org/10.1016/J.DIABRES.2013.11.002
Gunawan, F. R., Srihardyastutie, A., Roosdiana, A., & Safitri, A. (2022). Mikroenkapsulasi Berbasis Gum Arabik dari Ekstrak Air Pletekan (Ruellia tuberosa L.) dan Aktivitas Inhibisi Terhadap Alpha Amilase | The Indonesian Green Technology Journal. The Indonesian Green Technology Journal, 11(2), 79–85. https://igtj.ub.ac.id/index.php/igtj/article/view/1985
Gutierrez-Orozco, F., & Failla, M. L. (2013). Biological Activities and Bioavailability of Mangosteen Xanthones: A Critical Review of the Current Evidence. Nutrients 2013, Vol. 5, Pages 3163-3183, 5(8), 3163–3183. https://doi.org/10.3390/NU5083163
Ho, L. Y., Lim, Y. Y., Tan, C. P., & Siow, L. F. (2018). Comparison of physicochemical properties and aqueous solubility of xanthone prepared via oil-in-water emulsion and complex coacervation techniques. International Journal of Food Properties, 21(1), 784–798. https://doi.org/10.1080/10942912.2018.1446022
Horst, C., Pagno, C. H., Flores, S. H., & Costa, T. M. H. (2020). Hybrid starch/silica films with improved mechanical properties. Journal of Sol-Gel Science and Technology 2020 95:1, 95(1), 52–65. https://doi.org/10.1007/S10971-020-05234-X
Kanakdande, D., Bhosale, R., & Singhal, R. S. (2007). Stability of cumin oleoresin microencapsulated in different combination of gum arabic, maltodextrin and modified starch. Carbohydrate Polymers, 67(4), 536–541. https://doi.org/10.1016/J.CARBPOL.2006.06.023
Kementerian Kesehatan Republik Indonesia. (2020). Farmakope Indonesia Edisi VI (6th ed.). https://farmalkes.kemkes.go.id/2020/11/farmakope-indonesia-edisi-vi/
Kok, S. L., Lee, W. J., Smith, R. L., Suleiman, N., Jom, K. N., Vangnai, K., Bin-Sharaai, A. H., & Chong, G. H. (2021). Role of virgin coconut oil (VCO) as co-extractant for obtaining xanthones from mangosteen (Garcinia mangostana L.) pericarp with supercritical carbon dioxide extraction. The Journal of Supercritical Fluids, 176, 105305. https://doi.org/10.1016/J.SUPFLU.2021.105305
Komaiko, J., & McClements, D. J. (2015). Low-energy formation of edible nanoemulsions by spontaneous emulsification: Factors influencing particle size. Journal of Food Engineering, 146, 122–128. https://doi.org/10.1016/j.jfoodeng.2014.09.003
Kotyla, T., Kuo, F., Moolchandani, V., Wilson, T., & Nicolosi, R. (2008). Increased bioavailability of a transdermal application of a nano-sized emulsion preparation. International Journal of Pharmaceutics, 347(1–2), 144–148. https://doi.org/10.1016/j.ijpharm.2007.06.045
Kumoro, A. C., & Sholikhati, A. (2014, December). Dissolution rates of mangosteen (Garcinia mangostana L.) pericarps extract granules in synthetic human gastrointestinal fluid. Proceeding the Regional Conference on Chemical Engineering. https://www.semanticscholar.org/paper/Dissolution-Rates-of-Mangosteen-(Garcinia-L.)-in-Kumoro-Sholikhati/0bc14c345435a7a7d2e30158275ec5f2d30e9504
Li, X., Chen, H., Jia, Y., Peng, J., & Li, C. (2022). Inhibitory effects against alpha-amylase of an enriched polyphenol extract from pericarp of mangosteen (Garcinia mangostana L.). Foods (Basel, Switzerland), 11(7). https://doi.org/10.3390/FOODS11071001
Liu, K. (2000). Expanding soybean food utilization. Food Technology, 54, 46–59. https://doi.org/10.13170/AJAS.5.2.14972
Maligan, J. M., Chairunnisa, F., & Wulan, S. N. (2018). Peran xanthon kulit buah manggis (Garcinia mangostana L.) sebagai agen antihiperglikemik. Jurnal Ilmu Pangan Dan Hasil Pertanian, 2(2), 99–106. https://doi.org/10.26877/JIPHP.V2I2.2813
Mina, E. C. (2017). Ethnobotanical survey of plants commonly used for diabetes in tarlac of central luzon Philippines. The International Medical Journal Malaysia, 2, 21–28. http://dx.doi.org/
Mohammed, N. K., Tan, C. P., Manap, Y. A., Muhialdin, B. J., & Hussin, A. S. M. (2020). Spray drying for the encapsulation of oils-a review. Molecules (Basel, Switzerland), 25(17). https://doi.org/10.3390/MOLECULES25173873
Muhamad Adyab, N. S., Rahmat, A., Abdul Kadir, N. A. A., Jaafar, H., Shukri, R., & Ramli, N. S. (2019). Mangosteen (Garcinia mangostana) flesh supplementation attenuates biochemical and morphological changes in the liver and kidney of high fat diet-induced obese rats. BMC Complementary and Alternative Medicine, 19(1), 1–10. https://doi.org/10.1186/S12906-019-2764-5/FIGURES/2
Mulcahy, E. M., Mulvihill, D. M., & O’Mahony, J. A. (2016). Physicochemical properties of whey protein conjugated with starch hydrolysis products of different dextrose equivalent values. International Dairy Journal, 53, 20–28. https://doi.org/10.1016/J.IDAIRYJ.2015.09.009
Najafi, M. N., Kadkhodaee, R., & Mortazavi, S. A. (2011). Effect of drying process and wall material on the properties of encapsulated cardamom oil. Food Biophysics, 6(1), 68–76. https://doi.org/10.1007/S11483-010-9176-X
Ningsih, N., Yasni, S., & Yuliani, S. (2017). Sintesis nanopartikel ekstrak kulit manggis merah dan kajian sifat fungsional produk enkapsulasinya. Jurnal Teknologi Dan Industri Pangan, 28(1), 27–35. https://doi.org/10.6066/JTIP.2017.28.1.27
Ponce, P. A. C., Buera, M. P., & Elizalde, B. E. (2010). Encapsulation of cinnamon and thyme essential oils components (cinnamaldehyde and thymol) in β-cyclodextrin: effect of interactions with water on complex stability. Journal of Food Engineering, 99(1), 70–75. https://doi.org/10.1016/j.jfoodeng.2010.01.039
Reddy, M. N. P., Padma Ishwarya, S., & Anandharamakrishnan, C. (2019). Nanoencapsulation of roasted coffee bean oil in whey protein wall system through nanospray drying. Journal of Food Processing and Preservation, 43(3), 1–8. https://doi.org/10.1111/JFPP.13893
Rizki, T., Yasni, S., Muhandri, T., & Yuliani, S. (2023). Sintesis Nanoemulsi dari Ekstrak Kulit Manggis dengan Metode Energi Tinggi. Jurnal Teknologi Dan Industri Pangan, 34(1), 109–118. https://doi.org/10.6066/JTIP.2023.34.1.109
Shamaei, S., Seiiedlou, S. S., Aghbashlo, M., Tsotsas, E., & Kharaghani, A. (2017). Microencapsulation of walnut oil by spray drying: Effects of wall material and drying conditions on physicochemical properties of microcapsules. Innovative Food Science and Emerging Technologies, 39, 101–112. https://doi.org/10.1016/J.IFSET.2016.11.011
Tang, C. H. (2019). Nanostructured soy proteins: fabrication and applications as delivery systems for bioactives (a review). Food Hydrocolloids, 91, 92–116. https://doi.org/10.1016/J.FOODHYD.2019.01.012
Young, S. L., Sarda, X., & Rosenberg, M. (1993). Microencapsulating properties of whey Proteins. 2. combination of whey proteins with carbohydrates. Journal of Dairy Science, 76(10), 2878–2885. https://doi.org/10.3168/JDS.S0022-0302(93)77626-2
Copyright (c) 2024 Tri Rizki, Sedarnawati Yasni, Sri Yuliani, Tjahja Muhandri
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.