DNA-3-METHYLADENINE GLYCOSYLASE AS CANCER TARGET PROTEIN OF GOSSYPOL DERIVATIVES: A COMPUTATIONAL PHARMACOLOGY ANALYSIS

Authors

  • Muhammad Faisal Department of Pharmacology, Faculty of Medicine, Universitas Muhammadiyah Sumatera Utara, Medan 20217 Indonesia
  • Ilham Hariaji Department of Pharmacology, Faculty of Medicine, Universitas Muhammadiyah Sumatera Utara, Medan 20217 Indonesia

DOI:

https://doi.org/10.36526/biosense.v9i1.7294

Keywords:

Cancer target, Computational pharmacology, DNA-3-methyladenine glycosylase, Gossypol derivatives

Abstract

Gossypol, a natural polyphenolic compound derived from Gossypium species, has demonstrated broad anticancer activity; however, its clinical application is limited by poor pharmacokinetic properties and toxicity. This study employed an integrated computational pharmacology approach to evaluate gossypol and its derivatives, identify potential cancer-related target proteins, and elucidate their molecular interactions. ADMET profiling, cytotoxicity prediction, target identification, protein expression and prognostic analysis, and molecular docking were systematically performed. Several gossypol derivatives, particularly anhydrogossypol and gossypolone, exhibited improved drug-likeness, reduced predicted toxicity, favorable anticancer activity, and enhanced selectivity toward cancer cells compared with the parent compound. PASS-based target prediction consistently identified DNA-3-methyladenine glycosylase (MPG), a key enzyme in the base excision repair pathway, as a high-confidence molecular target. Clinical relevance analysis revealed that elevated MPG expressions were associated with unfavorable prognosis and were highly expressed across multiple cancer types, including colorectal, breast, and lung cancers. Molecular docking demonstrated strong binding affinities of selected derivatives within the MPG active site, involving conserved and functionally important residues such as TYR-127, TYR-165, CYS-167, and ARG-182. These findings suggest that gossypol derivatives may exert anticancer effects by modulating MPG-mediated DNA repair mechanisms. Overall, this study highlights MPG as a promising therapeutic target and supports further experimental investigation of optimized gossypol derivatives as potential anticancer agents.

References

Agnihotri, S., Burrell, K., Buczkowicz, P., Remke, M., Golbourn, B., Chornenkyy, Y., Gajadhar, A., Fernandez, N. A., Clarke, I. D., Barszczyk, M. S., Pajovic, S., Ternamian, C., Head, R., Sabha, N., Sobol, R. W., Taylor, M. D., Rutka, J. T., Jones, C., Dirks, P. B., … Hawkins, C. (2014). ATM Regulates 3-Methylpurine-DNA Glycosylase and Promotes Therapeutic Resistance to Alkylating Agents. Cancer Discovery, 4(10), 1198–1213. https://doi.org/10.1158/2159-8290.CD-14-0157

Ahmad, I., Kuznetsov, A. E., Pirzada, A. S., Alsharif, K. F., Daglia, M., & Khan, H. (2023). Computational pharmacology and computational chemistry of 4-hydroxyisoleucine: Physicochemical, pharmacokinetic, and DFT-based approaches. Frontiers in Chemistry, 11, 1145974. https://doi.org/10.3389/fchem.2023.1145974

Alhmoud, J. F., Woolley, J. F., Al Moustafa, A.-E., & Malki, M. I. (2020). DNA Damage/Repair Management in Cancers. Cancers, 12(4), 1050. https://doi.org/10.3390/cancers12041050

Banerjee, P., Kemmler, E., Dunkel, M., & Preissner, R. (2024). ProTox 3.0: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Research, 52(W1), W513–W520. https://doi.org/10.1093/nar/gkae303

Barry, C., Shahi, A., & Kidane, D. (2025). DNA glycosylase (NEIL3) overexpression associated with low tumor immune infiltration and poor overall patient survival in endometrial cancer. Scientific Reports, 15(1), 16308. https://doi.org/10.1038/s41598-025-00393-9

Bell, A., Stipanovic, R. D., Howell, C. R., & Fryxell, P. A. (1975). ANTIMICROBIAL TERPENOIDS OF GOSSYPIUM: HEMIGOSSYPOL, 6-METHOXYHEMIGOSSYPOL AND 6-DEOXYHEMIGOSSYPOL. Phytochemistry, 14, 225–231.

Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R. L., Soerjomataram, I., & Jemal, A. (2024). Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 74(3), 229–263. https://doi.org/10.3322/caac.21834

Chen, C., Guo, H., Shah, D., Blank, A., Samson, L., & Loeb, L. (2008). Substrate binding pocket residues of human alkyladenine-DNA glycosylase critical for methylating agent survival. DNA Repair, 7(10), 1731–1745. https://doi.org/10.1016/j.dnarep.2008.06.019

Dao, V. (2000). Synthesis and cytotoxicity of gossypol related compounds. European Journal of Medicinal Chemistry, 35(9), 805–813. https://doi.org/10.1016/S0223-5234(00)00165-3

Elkattan, H. H., Elsisi, A. E., & El-Lakkany, N. M. (2025). Gossypol enhances ponatinib’s cytotoxicity against human hepatocellular carcinoma cells by involving cell cycle arrest, p-AKT/LC3II/p62, and Bcl2/caspase-3 pathways. Toxicology Reports, 14, 101856. https://doi.org/10.1016/j.toxrep.2024.101856

Faisal, M., Graidist, P., & Tipmanee, V. (2024). Identification of promising cancer target proteins of major sesquiterpene lactones from Vernonia spp. Journal of Biomolecular Structure and Dynamics, 1–12. https://doi.org/10.1080/07391102.2024.2446662

Fu, L., Shi, S., Yi, J., Wang, N., He, Y., Wu, Z., Peng, J., Deng, Y., Wang, W., Wu, C., Lyu, A., Zeng, X., Zhao, W., Hou, T., & Cao, D. (2024). ADMETlab 3.0: An updated comprehensive online ADMET prediction platform enhanced with broader coverage, improved performance, API functionality and decision support. Nucleic Acids Research, 52(W1), W422–W431. https://doi.org/10.1093/nar/gkae236

Gadelha, I. C. N., Fonseca, N. B. S., Oloris, S. C. S., Melo, M. M., & Soto-Blanco, B. (2014). Gossypol Toxicity from Cottonseed Products. The Scientific World Journal, 2014, 1–11. https://doi.org/10.1155/2014/231635

Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., & Hutchison, G. R. (2012). Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics, 4(1), 17. https://doi.org/10.1186/1758-2946-4-17

Huang, L., Hu, J., Tao, W., Li, Y., Li, G., Xie, P., Liu, X., & Jiang, J. (2010). Gossypol inhibits phosphorylation of Bcl-2 in human leukemia HL-60 cells. European Journal of Pharmacology, 645(1–3), 9–13. https://doi.org/10.1016/j.ejphar.2010.06.070

Kladova, O. A., & Kuznetsova, A. A. (2025). The Link Between Human Alkyladenine DNA Glycosylase and Cancer Development. International Journal of Molecular Sciences, 26(15), 7647. https://doi.org/10.3390/ijms26157647

Koirala, M., & DiPaola, M. (2024). Overcoming Cancer Resistance: Strategies and Modalities for Effective Treatment. Biomedicines, 12(8), 1801. https://doi.org/10.3390/biomedicines12081801

Lagunin, A. A., Rudik, A. V., Pogodin, P. V., Savosina, P. I., Tarasova, O. A., Dmitriev, A. V., Ivanov, S. M., Biziukova, N. Y., Druzhilovskiy, D. S., Filimonov, D. A., & Poroikov, V. V. (2023). CLC-Pred 2.0: A Freely Available Web Application for In Silico Prediction of Human Cell Line Cytotoxicity and Molecular Mechanisms of Action for Druglike Compounds. International Journal of Molecular Sciences, 24(2), 1689. https://doi.org/10.3390/ijms24021689

Lagunin, A. A., Sezganova, A. S., Muraviova, E. S., Rudik, A. V., & Filimonov, D. A. (2024). BC CLC-Pred: A freely available web-application for quantitative and qualitative predictions of substance cytotoxicity in relation to human breast cancer cell lines. SAR and QSAR in Environmental Research, 35(1), 1–9. https://doi.org/10.1080/1062936X.2023.2289050

Lan, L., Appelman, C., Smith, A. R., Yu, J., Larsen, S., Marquez, R. T., Liu, H., Wu, X., Gao, P., Roy, A., Anbanandam, A., Gowthaman, R., Karanicolas, J., De Guzman, R. N., Rogers, S., Aubé, J., Ji, M., Cohen, R. S., Neufeld, K. L., & Xu, L. (2015). Natural product (−)‐gossypol inhibits colon cancer cell growth by targeting RNA‐binding protein Musashi‐1. Molecular Oncology, 9(7), 1406–1420. https://doi.org/10.1016/j.molonc.2015.03.014

Lau, A. Y., Wyatt, M. D., Glassner, B. J., Samson, L. D., & Ellenberger, T. (2000). Molecular basis for discriminating between normal and damaged bases by the human alkyladenine glycosylase, AAG. Proceedings of the National Academy of Sciences, 97(25), 13573–13578. https://doi.org/10.1073/pnas.97.25.13573

Lee, S., Hong, E., Jo, E., Kim, Z.-H., Yim, K. J., Woo, S. H., Choi, Y.-S., & Jang, H.-J. (2022). Gossypol Induces Apoptosis of Human Pancreatic Cancer Cells via CHOP/Endoplasmic Reticulum Stress Signaling Pathway. Journal of Microbiology and Biotechnology, 32(5), 645–656. https://doi.org/10.4014/jmb.2110.10019

Lin. (2009). Gossypol inhibits the growth of MAT-LyLu prostate cancer cells by modulation of TGFβ/Akt signaling. International Journal of Molecular Medicine, 24(01). https://doi.org/10.3892/ijmm_00000208

Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2012). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 64, 4–17. https://doi.org/10.1016/j.addr.2012.09.019

Liu, R., Schyman, P., & Wallqvist, A. (2015). Critically Assessing the Predictive Power of QSAR Models for Human Liver Microsomal Stability. Journal of Chemical Information and Modeling, 55(8), 1566–1575. https://doi.org/10.1021/acs.jcim.5b00255

Miller, R. F., & Adams, R. (1937). Structure of Gossypol. IV.1,2 Anhydrogossypol and its Derivatives. Journal of the American Chemical Society, 59(9), 1736–1738. https://doi.org/10.1021/ja01288a051

Ni, Z., Dai, X., Wang, B., Ding, W., Cheng, P., Xu, L., Lian, J., & He, F. (2013). Natural Bcl-2 inhibitor (−)– gossypol induces protective autophagy via reactive oxygen species–high mobility group box 1 pathway in Burkitt lymphoma. Leukemia & Lymphoma, 54(10), 2263–2268. https://doi.org/10.3109/10428194.2013.775437

Pöhner, I., Quotadamo, A., Panecka-Hofman, J., Luciani, R., Santucci, M., Linciano, P., Landi, G., Di Pisa, F., Dello Iacono, L., Pozzi, C., Mangani, S., Gul, S., Witt, G., Ellinger, B., Kuzikov, M., Santarem, N., Cordeiro-da-Silva, A., Costi, M. P., Venturelli, A., & Wade, R. C. (2022). Multitarget, Selective Compound Design Yields Potent Inhibitors of a Kinetoplastid Pteridine Reductase 1. Journal of Medicinal Chemistry, 65(13), 9011–9033. https://doi.org/10.1021/acs.jmedchem.2c00232

Sadahira, K., Sagawa, M., Nakazato, T., Uchida, H., Ikeda, Y., Okamoto, S., Nakajima, H., & Kizaki, M. (2014). Gossypol induces apoptosis in multiple myeloma cells by inhibition of interleukin-6 signaling and Bcl-2/Mcl-1 pathway. International Journal of Oncology, 45(6), 2778–2286. https://doi.org/10.3892/ijo.2014.2652

Saraswat, R., Gangawat, L. K., Khardiya, M., & Singh, D. (2022). Medicinal Chemistry In The Path Of Drug Discovery. Journal of Pharmaceutical Negative Results, 13(9). https://doi.org/10.47750/x67j0439

Shah, P., Siramshetty, V. B., Zakharov, A. V., Southall, N. T., Xu, X., & Nguyen, D.-T. (2020). Predicting liver cytosol stability of small molecules. Journal of Cheminformatics, 12(1), 21. https://doi.org/10.1186/s13321-020-00426-7

Song, Y.-Q., Li, G.-D., Niu, D., Chen, F., Jing, S., Wai Wong, V. K., Wang, W., & Leung, C.-H. (2023). A robust luminescent assay for screening alkyladenine DNA glycosylase inhibitors to overcome DNA repair and temozolomide drug resistance. Journal of Pharmaceutical Analysis, 13(5), 514–522. https://doi.org/10.1016/j.jpha.2023.04.010

Stipanovic, R. D., Bell, A. A., Mace, M. E., & Howell, C. R. (1975). Antimicrobial terpenoids of Gossypium: 6-methoxygossypol and 6,6′-dimethoxygossypol. Phytochemistry, 14(4), 1077–1081. https://doi.org/10.1016/0031-9422(75)85190-9

Šudomová, M., & Hassan, S. T. S. (2022). Gossypol from Gossypium spp. Inhibits Helicobacter pylori Clinical Strains and Urease Enzyme Activity: Bioactivity and Safety Assessments. Scientia Pharmaceutica, 90(2), 29. https://doi.org/10.3390/scipharm90020029

Sun, X., Ying, J., Ma, X., Zhong, Y., Huo, R., & Meng, Q. (2025). Effects of Gossypol Exposure on Ovarian Reserve Function: Comprehensive Risk Assessment Based on TRAEC Strategy. Toxics, 13(9), 763. https://doi.org/10.3390/toxics13090763

Trivedi, R. N., Wang, X., Jelezcova, E., Goellner, E. M., Tang, J., & Sobol, R. W. (2008). Human Methyl Purine DNA Glycosylase and DNA Polymerase β Expression Collectively Predict Sensitivity to Temozolomide. Molecular Pharmacology, 74(2), 505–516. https://doi.org/10.1124/mol.108.045112

Veber, D. F., Johnson, S. R., Cheng, H.-Y., Smith, B. R., Ward, K. W., & Kopple, K. D. (2002). Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. Journal of Medicinal Chemistry, 45(12), 2615–2623. https://doi.org/10.1021/jm020017n

Wang, X., Beckham, T. H., Morris, J. C., Chen, F., & Gangemi, J. D. (2008). Bioactivities of Gossypol, 6-Methoxygossypol, and 6,6′-Dimethoxygossypol. Journal of Agricultural and Food Chemistry, 56(12), 4393–4398. https://doi.org/10.1021/jf073297u

Wang, Y., Lai, H., Fan, X., Luo, L., Duan, F., Jiang, Z., Wang, Q., Leung, E. L. H., Liu, L., & Yao, X. (2018). Gossypol Inhibits Non-small Cell Lung Cancer Cells Proliferation by Targeting EGFRL858R/T790M. Frontiers in Pharmacology, 9, 728. https://doi.org/10.3389/fphar.2018.00728

Wei, J., Jagt, D. L. V., Royer, R. E., & Deck, L. M. (2010). Synthesis of hemigossypol and its derivatives. Tetrahedron Letters, 51(44), 5757–5760. https://doi.org/10.1016/j.tetlet.2010.08.089

Wei, J., Kitada, S., Rega, M. F., Emdadi, A., Yuan, H., Cellitti, J., Stebbins, J. L., Zhai, D., Sun, J., Yang, L., Dahl, R., Zhang, Z., Wu, B., Wang, S., Reed, T. A., Lawrence, N., Sebti, S., Reed, J. C., & Pellecchia, M. (2009). Apogossypol derivatives as antagonists of antiapoptotic Bcl-2 family proteins. Molecular Cancer Therapeutics, 8(4), 904–913. https://doi.org/10.1158/1535-7163.MCT-08-1050

Wei, J., Rega, M. F., Kitada, S., Yuan, H., Zhai, D., Risbood, P., Seltzman, H. H., Twine, C. E., Reed, J. C., & Pellecchia, M. (2009). Synthesis and evaluation of Apogossypol atropisomers as potential Bcl-xL antagonists. Cancer Letters, 273(1), 107–113. https://doi.org/10.1016/j.canlet.2008.07.031

Wong, F. Y., Liem, N., Xie, C., Yan, F. L., Wong, W. C., Wang, L., & Yong, W.-P. (2012). Combination Therapy with Gossypol Reveals Synergism against Gemcitabine Resistance in Cancer Cells with High BCL-2 Expression. PLoS ONE, 7(12), e50786. https://doi.org/10.1371/journal.pone.0050786

Wu, F., Zhou, Y., Li, L., Shen, X., Chen, G., Wang, X., Liang, X., Tan, M., & Huang, Z. (2020). Computational Approaches in Preclinical Studies on Drug Discovery and Development. Frontiers in Chemistry, 8, 726. https://doi.org/10.3389/fchem.2020.00726

Xiong, J., Li, J., Yang, Q., Wang, J., Su, T., & Zhou, S. (2017). Gossypol has anti-cancer effects by dual-targeting MDM2 and VEGF in human breast cancer. Breast Cancer Research, 19(1), 27. https://doi.org/10.1186/s13058-017-0818-5

Zhan, W., Hu, X., Yi, J., An, Q., & Huang, X. (2015). Inhibitory activity of apogossypol in human prostate cancer in vitro and in vivo. Molecular Medicine Reports, 11(6), 4142–4148. https://doi.org/10.3892/mmr.2015.3326

Downloads

Published

2026-01-31

How to Cite

Faisal, M., & Hariaji, I. (2026). DNA-3-METHYLADENINE GLYCOSYLASE AS CANCER TARGET PROTEIN OF GOSSYPOL DERIVATIVES: A COMPUTATIONAL PHARMACOLOGY ANALYSIS. JURNAL BIOSENSE, 9(1), 171–194. https://doi.org/10.36526/biosense.v9i1.7294

Most read articles by the same author(s)