Optimalisasi Teknik Image Enhancement untuk Klasifikasi Varietas Apel Menggunakan SVM dan CNN

Authors

DOI:

https://doi.org/10.36526/ztr.v7i2.5513

Keywords:

Classification, Apple Varieties, Bright Channel Prior, Support Vector Machine (SVM), CNN

Abstract

One of the largest export commodities in Indonesia is fruit commodities, one of which is apples. Apples have many varieties that differ in shape, color and size, which can cause identification and highlighting of apples to have limitations by requiring manual inspection from experts. This manual inspection is influenced by the expert's ability and experience in assessing the texture, color pattern, smell and characteristics of apples. In addition, the large diversity of apple varieties does not guarantee the completeness and ease of access related to information and data on apple varieties. The availability of this information is very important in supporting increased fruit production and determining superior apple varieties. So, a system is made that can classify apple varieties such as ana apples, manalagi apples, fuji apples, red delicious apples and rome beauty apples automatically. The apple variety classification methods used are SVM and CNN. The accuracy result of the SVM method is 94% based on texture feature parameters. While the CNN accuracy result is 100% Using learning rate 0.001 and epoh 20.

Author Biographies

Anju Alicia Johan, Politeknik Negeri Jember

Teknik Informatika, Jurusan Teknologi Informasi

Zilvanhisna Emka Fitri, Politeknik Negeri Jember

Teknologi Rekayasa Komputer, Jurusan Teknologi Informasi

Arizal Mujibtamala Nanda Imron, Universitas Jember

Teknologi Rekayasa Elektronika, Jurusan Teknik Elektro, Fakultas Teknik

Praditya Zainal Arif

Teknologi Rekayasa Elektronika, Jurusan Teknik Elektro, Fakultas Teknik

Downloads

Published

2025-10-29

How to Cite

Johan, A. A., Fitri, Z. E., Imron, A. M. N., & Arif, P. Z. (2025). Optimalisasi Teknik Image Enhancement untuk Klasifikasi Varietas Apel Menggunakan SVM dan CNN. JOURNAL ZETROEM, 7(2), 90–96. https://doi.org/10.36526/ztr.v7i2.5513

Issue

Section

Article