Mechanical Strength Analysis of Composites As Advanced And Sustainable Future Materials

Authors

  • Wahyu Fajar Manzilah University of PGRI Banyuwangi
  • Dr. Ikhwanul Qiram, S.T., M.T. University of PGRI Banyuwangi

DOI:

https://doi.org/10.36526/jeee.v4i1.5777

Keywords:

Fiber metal laminated, Resin and catalyst, Composite material, Mechanical testing

Abstract

The development of composite materials has become one of the efforts to improve energy efficiency, driven by increasing environmental concerns and the depletion of fossil and mineral resources. These issues have encouraged researchers across various countries to seek accurate and effective solutions, particularly in reducing the use of metallic materials in a sustainable manner. Research on natural fiber composites presents significant potential as an alternative sustainable material; however, technical challenges, economic value, and real-world application must be overcome in order to compete with conventional materials. Efforts to develop more environmentally friendly fiber processing methods are essential to maintain environmental stability during production and usage. Improving mechanical properties through variations and combinations of fibers and matrices tailored to specific functions or mechanical needs is also critical. Based on the research and analyses conducted, composite materials demonstrate good durability and mechanical strength using various components such as carbon or aramid fibers, combined with different types of matrices like polyester resin, epoxy, binders, and polypropylene. Each type of matrix significantly influences the resulting mechanical strength. With the continuous advancement of research, natural fibers offer great potential due to their abundant availability and eco-friendliness compared to carbon or aramid fibers, even though their mechanical strength is not yet on par

References

[1] Agarwal, K. K., & Agarwal, G. (2019). A Study of Mechanical Properties of Epoxy Resin In Presence of A Study of Mechanical Properties of Epoxy Resin In Presence of Different Hardeners. June.

[2] Baharuddin, M. H. Bin, Manik, P., & Kiryanto, K. (2025). Analisis Kombinasi Laminasi Serat Bambu Apus Dengan Fiberglass (Chopped Strand Matt) Menggunakan Teknik Anyaman Dicetak Lengkung (Curve) Untuk Material Kulit Kapal. Jurnal Teknik Perkapalan, 13(1).

[3] Fadhillah, arief riski, & sofyan arief setiyabudi, anindito purnowidodo. (2017). Karakteristik Komposit Serat Kulit Pohon Waru ( Hibiscus Tiliaceus ) Berdasarkan Jenis Resin Sintetis. 8(2), 101–108.

[4] Fadly, M. S., Tadulako, U., & Purnowidodo, A. (2022). Deformation and Energy Absorption of Fiber Metal Laminates ( FMLS ) After deformation and energy absorption of fiber metal laminates ( FMLs ) after ballistic impact load. August. https://doi.org/10.28989/senatik.v5i0.361

[5] Feng, N. L., Malingam, S. D., Ping, C. W., & Selamat, M. Z. (2022). Mechanical characterization of metal-composite laminates based on cellulosic kenaf and pineapple leaf fiber. Journal of Natural Fibers, 19(6), 2163–2175. https://doi.org/10.1080/15440478.2020.1807437

[6] Hastuti, S., Budiono, H. S., Ivadiyanto, D. I., & Nahar, M. N. (2021). Peningkatan Sifat Mekanik Komposit Serat Alam Limbah Sabut Kelapa (Cocofiber) yang Biodegradable. Reka Buana : Jurnal Ilmiah Teknik Sipil Dan Teknik Kimia, 6(1), 30–37. https://doi.org/10.33366/rekabuana.v6i1.2257

[7] Hestiawan, H., Jamasri, & Kusmono. (2017). Pengaruh Penambahan Katalis Terhadap Sifat Mekanis Resin Poliester Tak Jenuh. Teknosia, 3(1), 1–7.

[8] Marsono, M., Anggraeni, N. D., & Faisal, F. A. (2021). Kaji Eksperimental Sifat Mekanik Honeycomb Sandwich Komposit Serat Karbon dengan Uji Bending. METAL: Jurnal Sistem Mekanik Dan Termal, 5(2), 114. https://doi.org/10.25077/metal.5.2.114-125.2021

[9] Martynyuk, L. A., Afanasiev, D. V, Bykov, L. V, Ezhov, A. D., & Mezintsev, M. A. (2021). The study of the applicability of polymer composite materials for the manufacture of the impeller of a centrifugal compressor. IOP Conference Series: Materials Science and Engineering, 1060(1), 012026. https://doi.org/10.1088/1757-899x/1060/1/012026

[10] Pramudia, M., Prasetyo, T., Studi Teknik Mesin, P., Trunojoyo Madura, U., & Raya Telang, J. (2024). Analisis Kekuatan Bending Material Komposit Fiber Metal Laminate Serat Kulit Jagung Bermatriks Polyester. 15(02), 342–348. https://doi.org/10.35970/infotekmesin.v15i2.2343

[11] Roni, K. (2024). Pengaruh Pemaparan Cuaca Terhadap Densitas Komposit Poliester Dengan Penguat Serat Bambu Petung (Dendrocalamus Asper). Teknika, 9(1), 89–95. https://doi.org/10.52561/teknika.v9i1.355

[12] Suparno, O. (2020). Potensi Dan Masa Depan Serat Alam Indonesia Sebagai Bahan Baku Aneka Industri. Jurnal Teknologi Industri Pertanian, 30(2), 221–227. https://doi.org/10.24961/j.tek.ind.pert.2020.30.2.221.

[13] F. Jawaid, M. Thariq, and N. Saba, “A review on natural fiber reinforced hybrid composites: Processing, properties and applications,” Materials Today: Proceedings, vol. 19, pp. 379–384, 2019. doi: 10.1016/j.matpr.2019.07.668.

[14] K. Pickering, M. Aruan Efendy, and T. Le, “A review of recent developments in natural fibre composites and their mechanical performance,” Composites Part A: Applied Science and Manufacturing, vol. 83, pp. 98–112, Apr. 2016. doi: 10.1016/j.compositesa.2015.08.038.

[15] A. K. Bledzki and J. Gassan, “Composites reinforced with cellulose-based fibres,” Progress in Polymer Science, vol. 24, no. 2, pp. 221–274, 1999. doi: 10.1016/S0079-6700(98)00018-5.

[16] L. Yan, B. Kasal, and L. Huang, “A review of recent research on the use of cellulosic fibres, their fibre fabric reinforced cementitious, geo-polymer and polymer composites in civil engineering,” Composites Part B: Engineering, vol. 92, pp. 94–132, May 2016. doi: 10.1016/j.compositesb.2016.02.002.

[17] N. Saba, M. Jawaid, and M. T. Paridah, “Mechanical properties of kenaf fibre reinforced polymer composite: A review,” Construction and Building Materials, vol. 76, pp. 87–96, Feb. 2015. doi: 10.1016/j.conbuildmat.2014.11.035.

Bilah inpaler

Downloads

Published

2025-05-30