Electric-Based Vehicle Control System with Modified Half-Wave Rectifier Circuit to Increase Battery Power Efficiency

  • Arif Firmansah Universitas PGRI Banyuwangi
  • Adi Mulyadi Universitas PGRI Banyuwangi
Keywords: Electric-Based Vehicle, Control System, Half-Wave Rectifier, Efeciency

Abstract

This paper discusses electric-based vehicle control systems. Electric vehicle charging stations are only capable of charging based on slow, medium, fast, ultra fast charging and are not equipped with an overcharge system. So a control system is proposed for overcharge protection of battery current and voltage. The control system is modified with a half wave rectifier circuit to increase battery power efficiency. Method of modifying a half wave rectifier circuit with IC LM 7812 and capacitor. The results of the circuit modification show that the battery power is 7.96 w, 7.26 w, 6.60 w, 5.94 w, 5.24 w at varying input voltages of 220-200 Vac, and the efficiency is 0.87%-0.86% at an input voltage of 190-180 Vac. Meanwhile, the battery power is 7.96 w at an input voltage of 230 Vac and the efficiency is constant at 0.87%. The application of a control system can increase the efficiency of electricity-based vehicle batteries at a constant input voltage.

References

Ahmad, A. F. Farizy, and D. A. Asfani, “Jurnal Teknik ITS : publikasi online Mahasiwa ITS.,” J. Tek. ITS, vol. 5, no. 2, pp. B278–B282, 2016.

R. Faria, P. Moura, J. Delgado, and A. T. De Almeida, “Managing the charging of electrical vehicles: Impacts on the electrical grid and on the environment,” IEEE Intell. Transp. Syst. Mag., vol. 6, no. 3, pp. 54–65, 2014, doi: 10.1109/MITS.2014.2323437.

M. Aziz, Y. Marcellino, I. A. Rizki, S. A. Ikhwanuddin, and J. W. Simatupang, “Studi Analisis Perkembangan Teknologi Dan Dukungan Pemerintah Indonesia Terkait Mobil Listrik,” TESLA J. Tek. Elektro, vol. 22, no. 1, p. 45, 2020, doi: 10.24912/tesla.v22i1.7898.

B. Andrian and J. Viter Marpaung, “Studi Perancangan Kendaraan Listrik E-Bsw Yang Ramah Lingkungan,” Ramah Lingkung. J. Inosains, vol. 14, no. 2, pp. 44–50, 2019.

I. Fitriana, A. Sugiyono, and K. Akhmad, “Pengembangan Kendaraan Listrik Baterai di Indonesia: Peran dalam Mengurangi Emisi,” in Seminar Nasional Teknologi Bahan Dan Barang Teknik, Bandung: Balai Besar Bahan Dan Barang Teknik Kementerian Perindustrian Republik Indonesia, 2020, pp. 140–145.

I. Utami, D. Yoesgiantoro, and N. A. Sasongko, “Implementasi Kebijakan Kendaraan Listrik Indonesia Untuk Mendukung Ketahanan Energi Nasional,” J. Ketahanan Energi, vol. Volume 8 N, no. 1, pp. 49–65, 2022.

I. P. Agus Surya Adi P, I. N. Satya Kumara, and I. G. A. P. Raka Agung, “Status Perkembangan Sepeda Listrik Dan Motor Listrik Di Indonesia,” J. SPEKTRUM, vol. 8, no. 4, p. 8, 2022, doi: 10.24843/spektrum.2021.v08.i04.p2.

H. Fitrianto, “Analisis Penggunaan Kendaraan Listrik sebagai Upaya Penurunan Emisi Lingkungan Case Study Kendaraan Listrik di Provinsi Sumatera Utara,” Cakrawala Repos. IMWI, vol. 6, no. 2, pp. 1056–1067, 2023.

IESR, “Indonesia Clean Energy Outlook: Tracking Progress and Review of Clean Energy Development in Indonesia,” 2019. [Online]. Available: www.iesr.or.id

C. M. Annur, “Riset Deloitte dan Foundry: Penggunaan Motor Listrik di Indonesia Naik 13 Kali Lipat dalam Dua Tahun,” 2023.

Y. Xie, F. Posada, and A. Triatmojo, “Peta Jalan Kebijakan Untuk Percepatan Elektrifikasi Bus Angkutan Umum Perkotaan di Indonesia,” 2023.

ESR, “Dekarbonisasi Sektor Transportasi Untuk Meningkatkan Ambisi Mitigasi Perubahan Iklim Indonesia,” 2019.

Ministry of Energy and Mineral Resources, “Regulasi Penyediaan Infrastruktur Pengisian Kendaraan Bermotor Listrik Berbasis Baterai (KBLBB) Upaya Percepatan Pengembangan Infrastruktur KBLBB,” 2023.

D. Juarez-Robles, A. A. Vyas, C. Fear, J. A. Jeevarajan, and P. P. Mukherjee, “Overdischarge and Aging Analytics of Li-Ion Cells,” J. Electrochem. Soc., vol. 167, no. 9, p. 090558, 2020, doi: 10.1149/1945-7111/aba00a.

R. Thangasankaran and S. Parthasarathy, “Proteus/Simulink Analysis of Rectifier based E-Vehicle Charger Circuit,” in E3S Web of Conferences, 2023, pp. 1–9. doi: 10.1051/e3sconf/202338701011.

G. Musyahar and I. L. Mubarok, “Modifikasi Sepeda Listrik Menjadi Sepeda Listrik Hybrid Pada Suplai Energi Listrik,” Cahaya Bagaskara, vol. 1, no. 1, pp. 1–10, 2017.

A. J. Alrubaie, M. Salem, K. Yahya, M. Mohamed, and M. Kamarol, “A Comprehensive Review of Electric Vehicle Charging Stations with Solar Photovoltaic System Considering Market, Technical Requirements, Network Implications, and Future Challenges,” Sustain., vol. 15, no. 10, pp. 1–26, 2023, doi: 10.3390/su15108122.

A. Maulana and K. P. Pratama, “Bacistikbel: Battery Charger Sepeda Listrik Berbasis Panel Surya,” Universitas Islam Indonesia, 2022.

A. Kurniawan and Novaldi, “Pengembangan Sepeda Listrik dengan Energi Surya Sebagai Sarana Transportasi Area Perkotaan,” Politeknik Negeri Ujung Pandang, 2021.

A. Nurrachman, A. Saputra, and I. Riyanto, “Rancang Bangun Sepeda Portable Charging Station 12V 6W,” Ranc. bangun sepeda portable Charg. Stn. 12v 6w, vol. 3, no. 2, pp. 384–393, 2020.

A. Setyawan and A. Ulinuha, “Pembangkit Listrik Tenaga Surya Off Grid Untuk Supply Charge Station,” Transmisi, vol. 24, no. 1, pp. 23–28, 2022, doi: 10.14710/transmisi.24.1.23-28.

Arman and M. J. Dullah, “Perancangan Pengisian Baterai Sepeda Listrik Motor BLDC Menggunakan Panel Surya,” in Prosiding 5th Seminar Nasional Penelitian & Pengabdian Kepada Masyarakat 2021, 2021, p. 2021.

Asrori, M. Z. F. Harahap, and H. Agus, “Perbandingan Performansi Panel Surya Tipe Amorphous dan Polycrystalline terhadap Daya Pengisian Baterai Lithium-Ion pada Electric Scooter,” Jur. Tek. Mesin, Politek. Negeri Malang, vol. 7, no. 4, pp. 1091–1103, 2022.

A. Asrori, F. A. Jatmiko, M. N. Hidayat, and D. Perdana, “Pengaruh Panel Surya Bentuk Flat dan Flexy Terhadap Daya Pengisian Baterai Sepeda Listrik,” J. Rekayasa Hijau, vol. 7, no. 1, pp. 90–100, 2023, doi: 10.26760/jrh.v7i1.90-100.

B. A. Girawan, N. Akhlis, S. Laksana, and D. Prabowo, “Perancangan Sepeda Listrik Semoli Untuk Beban 80 Kg,” Accurate J. Mech. Eng. Sci., vol. 3, no. 2, pp. 1–7, 2022, doi: 10.35970/accurate.v3i2.1556.

B. S. Utama, “Perancangan Baterai Sepeda Listrik Dilengkapi Dengan Sistem Monitoring Arus dan Proteksi Penurunan Tegangan,” Universitas Tidar, 2022.

E. Prianto, N. Yuniarti, and D. C. Nugroho, “Boost-Converter Sebagai Alat Pengisian Baterai Pada Sepeda Listrik Secara Otomatis,” J. Edukasi Elektro, vol. 4, no. 1, pp. 52–62, 2020, doi: 10.21831/jee.v4i1.32632.

D. Harjono, W. Widodo, H. Sugiarto, and A. Bakar, “Analisis Kapasitas Dan Pengisian Baterai Pada Mobil Listrik Ponecar,” J. Elit, vol. 3, no. 1, pp. 1–10, 2022, doi: 10.31573/elit.v3i1.378.

M. Fidaul Ahsan, R. Dodi Pratama, R. Sigit Hidayat, D. Prayoga, and D. Oktavina Radianto, “Rancangan Fast Charging untuk Kendaraan Listrik dengan Menggunakan Algoritma Kontrol Tegangan pada Baterai,” J. Syntax Fusion, vol. 3, no. 07, pp. 708–714, 2023, doi: 10.54543/fusion.v3i07.342.

F. N. Kuncoro, K. Hakim, and M. Al Hamid, “Desain dan Simulasi Switching System Dual Platform Baterai Hibrida Lead Acid dan Lithium Untuk Meningkatkan Performa Kendaraan Listrik Menggunakan software …,” in National Conference PKM Center Sebelas Maret University, 2021, pp. 183–187.

H. A. Bhardani, B. S. Kaloko, R. M. Gozali, and D. K. Setiawan, “Desain Sepeda Statis Sebagai Pemanen Energi Untuk Pengisian Baterai,” J. Arus Elektro Indones., vol. 8, no. 1, p. 15, 2022, doi: 10.19184/jaei.v8i1.28290.

A. Anshori, B. Siswojo, and R. N. Hasanah, “Teknik Fast Charging Baterai Lithium-Ion Menggunakan Logika Fuzzy,” J. Ecotipe (Electronic, Control. Telecommun. Information, Power Eng., vol. 7, no. 1, pp. 26–37, 2020, doi: 10.33019/ecotipe.v7i1.1384.

T. P. Cahyono, T. Hardianto, and B. S. Kaloko, “Pengujian Karakteristik Baterai Lithium-Ion Dengan Metode Fuzzy Dengan Beban Bervariasi,” J. Arus Elektro Indones., vol. 6, no. 3, p. 82, 2020, doi: 10.19184/jaei.v6i3.19708.

R. Rakhmawati, Z. Rana Khalisa Permana, R. Prilian Eviningsih, and P. Elektronika Negeri Surabaya, “Fast Charging on Li-ion Batteries with ANFIS Control,” Renny Rakhmawati Fast Charg. Li-ion …, vol. 12, no. 2, pp. 93–100, 2023.

ISC, “ISC Three Terminal Negative Voltage Regulator,” China, 1991. [Online]. Available: http://www.iscsemi.cn

Rubycorn, “Radial Lead Alumunium Electrolytic Capacitors,” Singapore, 2000. [Online]. Available: https://www.mouser.co.id

A. Tomi, Muliadi, and Syukri, “Analisis Efisiensi Transformator Daya di,” J. Tek. Elektro, vol. 3, no. 1, pp. 8–13, 2023.

M. F. Aulia and A. Mulyadi, “Rangkaian Penyearah Gelombang Penuh Dengan Modifikasi IC Untuk Mengurangi Output Ripple Gelombang DC,” J. Energy, vol. 12, no. 2, pp. 57–64, 2022, doi: 10.51747/energy.v13i2.1779.

E. Dermawan and A. Marthalia, “Evaluasi Penentuan Rugi-Rugi Transformatordalam Pengaruh Arus Non-Sinusoidal,” Tek. Elektro, vol. 13, no. 2, pp. 7–15, 2017.

A. N. Ihsan, Joko, B. Suprianto, and T. Wrahatnolo, “Analisis dan Efisiensi Kebutuhan Kapasitas Baterai 110 Volt DC Gas Insulated Switchgear (GIS) 150 KV Wonokromo Surabaya,” J. Tek. Elektro, vol. 11, no. 03, pp. 481–488, 2022.

Published
2024-01-22