STUDI KINETIKA EKSTRAKSI TEMBAGA DARI BIJIH ENARGIT DALAM LARUTAN ASAM SULFAT
DOI:
https://doi.org/10.36526/jc.v7i2.6239Keywords:
Enargite, Copper Extraction, Leaching Kinetics, HydrometallurgyAbstract
This study investigates the kinetics of copper extraction from enargite ore (Cu₃AsS₄) using sulfuric acid (H₂SO₄) solution with hydrogen peroxide (H₂O₂) as an oxidizing agent. Leaching experiments were carried out under various operating conditions, including H₂SO₄ concentrations (1, 1.5, and 2 M), H₂O₂ concentrations (1, 1.5, and 3 M), solid percentages (5%, 10%, and 15%), and temperatures (30, 40, and 50 °C), with a leaching time of up to 480 minutes. The results indicated that higher concentrations of H₂SO₄ and H₂O₂ significantly enhanced copper extraction efficiency, while increasing solid percentage reduced the leaching performance. The optimum condition was achieved at 2 M H₂SO₄, 3 M H₂O₂, 5% solids, and 50 °C, resulting in a maximum copper extraction of 97.95%. Kinetic analysis revealed that the leaching process was predominantly controlled by diffusion through a porous product layer based on the shrinking core model, but shifted to interface reaction control at higher temperatures. These findings provide new insights into the leaching mechanism of enargite ore and serve as a foundation for developing more efficient and environmentally friendly hydrometallurgical processes for copper recovery.
References
Ali, A., Chiang, Y. W., & Santos, R. M. (2021). X-Ray Diffraction Techniques for Mineral Characterization: A Review for Engineers of the Fundamentals, Applications, and Research Directions. https://doi.org/10.20944/PREPRINTS202112.0438.V1
Bogdanović, G. D., Petrović, S., Sokić, M., & Antonijević, M. M. (2020). Chalcopyrite leaching in acid media: a review. Metallurgical and Materials Engineering, 26(2), 177–198. https://doi.org/10.30544/526
Calvo, G., Mudd, G., Valero, A., & Valero, A. (2016). Decreasing Ore Grades in Global Metallic Mining: A Theoretical Issue or a Global Reality? Resources, 5(4). https://doi.org/10.3390/RESOURCES5040036
Chambers, B., Pickles, C. A., & Peacey, J. G. (2012). Thermodynamic analysis of the sulphation roasting of enargite concentrates. High Temperature Materials and Processes, 31(4–5), 613–625. https://doi.org/10.1515/HTMP-2012-0099/PDF
Đorđević, B., Popović, G., & Milanović, D. (2019). The effect of macroeconomic determinants of the Chinese economy on the copper price movements. Mining and Metallurgy Engineering Bor, 1–2, 91–106. https://doi.org/10.5937/MMEB1902091D
Elshkaki, A., Graedel, T. E., Ciacci, L., & Reck, B. K. (2018). Resource Demand Scenarios for the Major Metals. Environmental Science &Amp; Technology, 52(5), 2491–2497. https://doi.org/10.1021/ACS.EST.7B05154
Fathoni, M. W., & Mubarok, M. Z. (2017). Study of Copper Recovery from Spent Electrolyte Silver by Solvent Extraction – Electrowinning Using Mextral 5640 H. Metalurgi, 32(1), 9. https://doi.org/10.14203/METALURGI.V32I1.163
Filippou, D., St-Germain, P., & Grammatikopoulos, T. (2007). RECOVERY OF METAL VALUES FROM COPPER—ARSENIC MINERALS AND OTHER RELATED RESOURCES. Mineral Processing and Extractive Metallurgy Review, 28(4), 247–298. https://doi.org/10.1080/08827500601013009
Handayani, S. (2020). Penggunaan mikroorganisme dalam industri pemrosesan mineral. Jurnal Teknologi Mineral Dan Batubara, 16(2), 57–68. https://doi.org/10.30556/JTMB.VOL16.NO2.2020.1088
Hao, J., Wang, X., Wang, Y., Wu, Y., & Guo, F. (2022). Optimizing the Leaching Parameters and Studying the Kinetics of Copper Recovery from Waste Printed Circuit Boards. ACS Omega, 7(4), 3689–3699. https://doi.org/10.1021/ACSOMEGA.1C06173
Jahromi, F. G., & Ghahreman, A. (2019). Effect of Surface Modification with Different Acids on the Functional Groups of AF 5 Catalyst and Its Catalytic Effect on the Atmospheric Leaching of Enargite. Colloids and Interfaces, 3(2). https://doi.org/10.3390/COLLOIDS3020045
Karimov, K. A., Rogozhnikov, D. A., Kuzas, E. A., & Shoppert, A. A. (2020). Leaching Kinetics of Arsenic Sulfide-Containing Materials by Copper Sulfate Solution. Metals, 10(1). https://doi.org/10.3390/MET10010007
Karimova, L., Makasheva, G., Zakharyan, D., Malyshev, V., & Kharchenko, Y. (2024). Studies on Extraction of Copper From Sulfuric Acid Solution After Thermochemical Enrichment of Rough Concentrate. Acta Metallurgica Slovaca, 30(2), 64–71. https://doi.org/10.36547/AMS.30.2.2020
Kusdarini, E., Saleky, D. B., & Sari, A. S. (2023). Recovery Tembaga Menggunakan Asam Sulfat. Jurnal GEOSAPTA, 9(1), 33. https://doi.org/10.20527/JG.V9I1.14572
Lèbre, É., Owen, J. R., Corder, G. D., Kemp, D., Stringer, M., & Valenta, R. K. (2019). Source Risks As Constraints to Future Metal Supply. Environmental Science &Amp; Technology, 53(18), 10571–10579. https://doi.org/10.1021/ACS.EST.9B02808
Levenspiel, O. (1999). Chemical Reaction Engginering (3th editio). John Wiley & Sons.
Moraga, G. A., Jamett, N. E., Hernández, P. C., Graber, T. A., & Taboada, M. E. (2021). Chalcopyrite Leaching with Hydrogen Peroxide and Iodine Species in Acidic Chloride Media at Room Temperature: Technical and Economic Evaluation. Metals, 11(10). https://doi.org/10.3390/MET11101567
Mubarak, Y. A. (2020). Leaching of Copper Ores: Effects of Operating Variables. International Journal of Emerging Trends in Engineering Research, 8(8), 4226–4235. https://doi.org/10.30534/IJETER/2020/31882020
Nurfaidah, A. Y., Lestari, D. P., Azzahra, R. T., & Suminar, D. R. (2020). Pengaruh Suhu dan Konsentrasi terhadap Proses Pemisahan Nikel dari Logam Pengotor Menggunakan Metode Leaching. Fluida, 13(2), 81–92. https://doi.org/10.35313/FLUIDA.V13I2.2388
Nurtazina, N., Uvarov, N., Azhigulova, R., & Tyapkin, P. (2022). Chalcopyrite leaching by amino acid solutions in the presence of hydrogen peroxide. Physicochemical Problems of Mineral Processing, 58(6). https://doi.org/10.37190/PPMP/157067
Pan, Z., Jian, C., Peng, Z., Fu, X., He, R., Yue, T., & Sun, W. (2024). Study on Process Mineralogy of the Combined Copper Oxide Ore in Tibet and Acid Leaching Behavior with Calcium Fluoride. Minerals, 14(4). https://doi.org/10.3390/MIN14040352
Pérez, K., Jeldres, R. I., Nieto, S., Salinas-Rodríguez, E., Robles, P., Quezada, V., Hernández-ávila, J., & Toro, N. (2020). Leaching of Pure Chalcocite in a Chloride Media Using Waste Water at High Temperature. Metals, 10(3). https://doi.org/10.3390/MET10030384
Petrović, S. J., Bogdanović, G. D., Antonijević, M. M., Vukčević, M., & Kovačević, R. (2023). The Extraction of Copper from Chalcopyrite Concentrate with Hydrogen Peroxide in Sulfuric Acid Solution. Metals, 13(11). https://doi.org/10.3390/MET13111818
Qiao, Y., Diao, J., Liu, D., Yang, J., Guo, D., Gong, S., & Xie, B. (2018). Dephosphorisation of steel slags by leaching with sulphuric acid. Mineral Processing and Extractive Metallurgy, 127(4), 250–254. https://doi.org/10.1080/03719553.2017.1412096
Rampe, E., Blake, D., Sarrazin, P., Bristow, T., Gailhanou, M., Lafuente, B., Tu, V., Zacny, K., & Downs, R. (2021). CheMinX: A Next Generation XRD/XRF for Quantitative Mineralogy and Geochemistry on Mars. Bulletin of the AAS, 53(4). https://doi.org/10.3847/25C2CFEB.A4A55445
Rötzer, N., & Schmidt, M. (2020). Historical, Current, and Future Energy Demand from Global Copper Production and Its Impact on Climate Change. Resources, 9(4). https://doi.org/10.3390/RESOURCES9040044
Sabzezari, B., Koleini, S. M. J., Ghassa, S., Shahbazi, B., & Chelgani, S. C. (2019). Microwave-Leaching of Copper Smelting Dust for Cu and Zn Extraction. Materials, 12(11). https://doi.org/10.3390/MA12111822
Safarzadeh, M. S., Miller, J. D., & Huang, H. H. (2014). Thermodynamic Analysis of the Cu-As-S-(O) System Relevant to Sulfuric Acid Baking of Enargite at 473 K (200 °C). Metallurgical and Materials Transactions B, 45(2), 568–581. https://doi.org/10.1007/S11663-013-9965-Y
Safarzadeh, M. S., Moats, M. S., & Miller, J. D. (2014). Recent Trends in the Processing of Enargite Concentrates. Mineral Processing and Extractive Metallurgy Review, 35(5), 283–367. https://doi.org/10.1080/08827508.2012.723651
Tanda, B. C., Oraby, E. A., & Eksteen, J. J. (2021). Kinetics of malachite leaching in alkaline glycine solutions. Mineral Processing and Extractive Metallurgy, 130(1), 16–24. https://doi.org/10.1080/25726641.2018.1505211
Toro, N., Briceño, W., Pérez, K., Cánovas, M., Trigueros, E., Sepúlveda, R., & Hernández, P. (2019). Leaching of Pure Chalcocite in a Chloride Media Using Sea Water and Waste Water. Metals, 9(7). https://doi.org/10.3390/MET9070780
Vardner, J. T., Inaba, Y., Jung, H., Farinato, R. S., Nagaraj, D. R., Banta, S., & West, A. C. (2023). The Reductive Leaching of Chalcopyrite by Chromium(II) Chloride for the Rapid and Complete Extraction of Copper. ChemistryOpen, 12(1). https://doi.org/10.1002/OPEN.202200196
Vidal, O., Rostom, F. Z., François, C., & Giraud, G. (2019). Prey–Predator Long-Term Modeling of Copper Reserves, Production, Recycling, Price, and Cost of Production. Environmental Science &Amp; Technology, 53(19), 11323–11336. https://doi.org/10.1021/ACS.EST.9B03883
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Kostiawan Sukamto, Isal Kamumu, Ahmad Kadir Kilo, Akram La Kilo

This work is licensed under a Creative Commons Attribution 4.0 International License.