STRATEGIES FOR ENHANCING THE PERFORMANCE OF LI [NIXCOYMN1-X-Y] O2 CATHODE MATERIALS FOR LI-ION BATTERIES
DOI:
https://doi.org/10.36526/jc.v7i2.6193Keywords:
Li[NixCoyMn1-x-y]O2, Lithium-ion Battery, Surface Coating, Elemental Doping, Single-Crystal Structure, Concentration Gradient, Degradation MechanismsAbstract
Abstract
Li[NixCoyMn1-x-y]O2 layered oxides Cathode Materials are among the most widely studied cathode materials for lithium-ion batteries due to their high gravimetric and volumetric energy density compared to other type cathode materials. However, the practical deployment of Ni-rich NCM materials is hindered by severe degradation mechanisms, including cation-mixing, surface reconstruction, electrolyte reactivity, transition metal dissolution, and oxygen release, which compromise cycling stability and safety. This review systematically synthesizes recent progress in advanced modification strategies designed to mitigate degradation in Li[NixCoyMn1-x-y]O2 cathodes. The discussion is structured into four major approaches: (i) surface modification, which employs protective coatings to suppress interfacial reactions and stabilize the cathode–electrolyte interphase; (ii) elemental doping, which strengthens the lattice, reduces cation mixing, and inhibits oxygen evolution; (iii) single-crystal engineering, which eliminates grain-boundary failure and improves thermal stability; and (iv) concentration-gradient architectures, which alleviate internal stress and enhance the durability of Ni-rich cathodes. Empirical evidence demonstrates that these strategies not only extend cycle life but also provide mechanistic insights into the underlying degradation pathways. By consolidating findings from recent experimental, this review highlights the necessity of integrating structural, chemical, and morphological interventions to realize the full potential of Ni-rich NCM cathodes. The insights presented offer a framework for designing safer, higher-performance, and commercially scalable lithium-ion batteries.
Abstrak
Li[NixCoyMn1-x-y]O2 berbasis oksida berlapis merupakan salah satu material katoda yang paling banyak dikaji dalam pengembangan baterai litium-ion. Keunggulan utamanya terletak pada kerapatan energi gravimetri dan volumetri yang lebih tinggi dibandingkan dengan jenis katoda lain. Namun demikian, penerapan praktis material NCM kaya nikel masih menghadapi sejumlah kendala serius akibat berbagai mekanisme degradasi, antara lain pencampuran kation, rekonstruksi permukaan, reaktivitas dengan elektrolit, pelarutan logam transisi, serta pelepasan oksigen. Mekanisme-mekanisme tersebut secara langsung menurunkan stabilitas siklus dan tingkat keselamatan baterai.Ulasan ini menyajikan sintesis sistematis mengenai perkembangan mutakhir strategi modifikasi lanjutan yang dirancang untuk menekan degradasi pada katoda Li[NixCoyMn1-x-y]O2. Terdapat empat pendekatan utama yang dibahas, yaitu: (i) modifikasi permukaan, melalui penerapan lapisan pelindung guna menekan reaksi antarmuka dan menstabilkan lapisan katoda–elektrolit; (ii) doping unsur, yang berfungsi memperkuat struktur kisi, mengurangi pencampuran kation, serta menekan evolusi oksigen; (iii) rekayasa kristal tunggal, yang mengatasi kegagalan pada batas butir sekaligus meningkatkan stabilitas termal; dan (iv) arsitektur gradien konsentrasi, yang mampu meredam tegangan internal dan memperpanjang daya tahan katoda kaya nikel. Hasil-hasil empiris menunjukkan bahwa penerapan strategi tersebut tidak hanya memperpanjang umur pakai siklus, tetapi juga memperkaya pemahaman tentang mekanisme degradasi yang mendasari. Dengan mengintegrasikan temuan-temuan eksperimental terbaru, ulasan ini menegaskan pentingnya perpaduan intervensi struktural, kimia, dan morfologis untuk mengoptimalkan kinerja katoda NCM kaya nikel. Wawasan yang dihadirkan sekaligus menawarkan kerangka konseptual bagi pengembangan baterai litium-ion yang lebih aman, berkapasitas tinggi, dan memiliki prospek komersialisasi yang luas.
References
Aarik, Lauri et al. (2022). Mechanical Properties of Crystalline and Amorphous Aluminum Oxide Thin Films Grown by Atomic Layer Deposition, Surface and Coatings Technology 438: 128409.
Bandpey, Mohammad et al. (2023). Improved Electrochemical Performance of the Cation-Disordered NMC Cathode of Lithium-Ion Batteries by Lithium Phosphate Coating, ACS Applied Energy Materials 6(15): 7974–84.
Breuer, Ortal et al. (2018). Understanding the Role of Minor Molybdenum Doping in LiNi0.5Co0.2Mn0.3O2 Electrodes: From Structural and Surface Analyses and Theoretical Modeling to Practical Electrochemical Cells, ACS Applied Materials and Interfaces 10(35): 29608–21.
Byeon, Yun Seong et al. (2024). Comprehensive Understanding of Elemental Doping and Substitution of Ni-Rich Cathode Materials for Lithium-Ion Batteries via In Situ Operando Analyses, Small Science 2400165.
Chen, Guanwen et al. (2024). Stabilizing Ni-Rich Layered Cathode for High-Voltage Operation through Hierarchically Heterogeneous Doping with Concentration Gradient, Materials Today Chemistry 35(November 2023): 101845.
Chen, Yan-Hui et al. (2021). Understanding the Role of Various Dopant Metals (Sb, Sn, Ga, Ge, and V) in the Structural and Electrochemical Performances of LiNi0.5Co0.2Mn0.3O2, The Journal of Physical Chemistry C 125(36): 19600–608.
Cheng, Eric Jianfeng et al. (2017). Mechanical and Physical Properties of LiNi0.33Mn0.33Co0.33O2 (NMC), Journal of the European Ceramic Society 37(9): 3213–17.
Cheng, Jianli, Eric Sivonxay, and Kristin A. Persson. (2020). Evaluation of Amorphous Oxide Coatings for High-Voltage Li-Ion Battery Applications Using a First-Principles Framework, ACS Applied Materials and Interfaces 12(31): 35748–56.
Cheng, Z et al. (2020). Revealing the Impact of Space-Charge Layers on the Li-Ion Transport in All-Solid-State Batteries, Joule 4, 1311–1323.”
Cho, Yongbeom et al. (2017). Activating Layered LiNi0.5Co0.2Mn0.3O2 as a Host for Mg Intercalation in Rechargeable Mg Batteries, Materials Research Bulletin 96: 524–32.
Dang, Rongxin et al. (2022). The Effect of Elemental Doping on Nickel-Rich NCM Cathode Materials of Lithium Ion Batteries, Journal of Physical Chemistry C 126(1): 151–59.
Ding, C X, Y C Bai, X Y Feng, and C H Chen. (2011). Improvement of Electrochemical Properties of Layered LiNi1/3Co1/3Mn1/3O2 Positive Electrode Material by Zirconium Doping, Solid State Ionics 189(1): 69–73.
Ding, Yanhuai, Ping Zhang, Yong Jiang, and Deshu Gao. (2007). Effect of Rare Earth Elements Doping on Structure and Electrochemical Properties of LiNi1/3Co1/3Mn1/3O2 for Lithium-Ion Battery, Solid State Ionics 178(13): 967–71.
DONG, Ming-xia et al. (2017). Enhanced Cycling Stability of La Modified LiNi0.8–XCo0.1Mn0.1LaxO2 for Li-Ion Battery. Transactions of Nonferrous Metals Society of China 27(5): 1134–42.
Dong, Shengde et al. (2019). Solvothermally Synthesized Li(Ni0.6Co0.2Mn0.2)XCd1-XO2 Cathode Materials with Excellent Electrochemical Performance for Lithium-Ion Batteries.” Ionics 25(12): 5655–67.
Du, Rui et al. (2015). Improved Cyclic Stability of LiNi0.8Co0.1Mn0.1O2 via Ti Substitution with a Cut-off Potential of 4.5V, Ceramics International 41(5, Part B): 7133–39.
Fan, Qinglu et al. (2020). Constructing Effective TiO2 Nano-Coating for High-Voltage Ni-Rich Cathode Materials for Lithium Ion Batteries by Precise Kinetic Control, Journal of Power Sources 477: 228745.
Geng, Chenxi et al. (2022). Mechanism of Action of the Tungsten Dopant in LiNiO2 Positive Electrode Materials, Advanced Energy Materials 12(6): 2103067.
Hai-Lang Zhang, Shuixiang Liu. (2013). Synthesis and Characterization of LiNi1/3Co1/3Mn1/3O2−xClx as Cathode Materials for Lithium Ion Batteries at 55°C, Advances in Materials science and Engineering.
Han, Binghong et al. (2017), Understanding the Role of Temperature and Cathode Composition on Interface and Bulk: Optimizing Aluminum Oxide Coatings for Li-Ion Cathodes, ACS applied materials & interfaces 9(17): 14769–78.
He, Tao et al. (2019), The Effects of Alkali Metal Ions with Different Ionic Radii Substituting in Li Sites on the Electrochemical Properties of Ni-Rich Cathode Materials, Journal of Power Sources 441: 227195.
Hendri, Yola Bertilsya et al. (2024). Two Birds with One Stone: One-Pot Concurrent Ta-Doping and -Coating on Ni-Rich LiNi0.92Co0.04Mn0.04O2 Cathode Materials with Fiber-Type Microstructure and Li+-Conducting Layer Formation, Journal of Colloid and Interface Science 661(November 2023): 289–306.
Huang, Zhi Xiong et al. (2023). Advanced Layered Oxide Cathodes for Sodium/Potassium-Ion Batteries: Development, Challenges and Prospects, Chemical Engineering Journal 452(P3): 139438.
Jeon, Hyungkwon et al. (2022). Synthesis of Ni-Rich NCMA Precursor through Co-Precipitation and Improvement of Cycling through Boron and Sn Doping, Korean Journal of Materials Research 32(4): 210–15.
Kalaiselvi, K, and G Paruthimal Kalaignan. (2019). Yttrium-Substituted LiNi0.3Mn0.3Co0.3O2 Cathode Material with Enhanced Cycling Stability for Rechargeable Lithium-Ion Batteries, Ionics 25(3): 991–97.
Kang, Shifei et al. 2014. Preparation and Electrochemical Performance of Yttrium-Doped Li[Li0.20Mn0.534Ni0.133Co0.133]O2 as Cathode Material for Lithium-Ion Batteries, Electrochimica Acta 144: 22–30.
Kaushik, Shruti et al. (2024). Recent Advancements in Cathode Materials for High-Performance Li-Ion Batteries: Progress and Prospects, Journal of Energy Storage 97(PA): 112818.
Kim, U. H. et al. (2018). Pushing the Limit of Layered Transition Metal Oxide Cathodes for High-Energy Density Rechargeable Li Ion Batteries, Energy and Environmental Science 11(5): 1271–79.
Kim, Un Hyuck et al. (2019). Microstructure-Controlled Ni-Rich Cathode Material by Microscale Compositional Partition for Next-Generation Electric Vehicles, Advanced Energy Materials 9(15): 1–11.
Kucinskis, Gints, Gunars Bajars, and Janis Kleperis. (2013). Graphene in Lithium Ion Battery Cathode Materials: A Review, Journal of Power Sources 240: 66–79.
Laine, Petteri et al. (2024). Synergistic Effects of Low - Level Magnesium and Chromium Doping on the Electrochemical Performance of LiNiO2 Cathodes, Journal of Solid State Electrochemistry 28(1): 85–101.
Laskar, Masihhur R et al. (2017). Atomic Layer Deposited MgO: A Lower Overpotential Coating for Li [Ni0.5Mn0.3Co0.2]O2 Cathode, ACS applied materials & interfaces 9(12): 11231–39.
Lee, Jimin et al. (2021). The Effect of Excessive Sulfate in the Li-Ion Battery Leachate on the Properties of Resynthesized Li[Ni1/3Co1/3Mn1/3]O2, Materials 14(21).
Lei, Tongxing et al. (2018). High-Voltage Electrochemical Performance of LiNi0.5Co0.2Mn0.3O2 Cathode Materials via Al Concentration Gradient Modification, Ceramics International 44(8): 8809–17.
Li, Jing et al. (2020). An Effective Doping Strategy to Improve the Cyclic Stability and Rate Capability of Ni-Rich LiNi0.8Co0.1Mn0.1O2 Cathode, Chemical Engineering Journal 402(March): 126195.
Li, Ling-jun et al. (2012). Effects of Chromium on the Structural, Surface Chemistry and Electrochemical of Layered LiNi0.8−xCo0.1Mn0.1CrxO2, Electrochimica Acta 77: 89–96.
Li, Nan et al. (2017). Incorporation of Rubidium Cations into Li1.2Mn0.54Co0.13Ni0.13O2 Layered Oxide Cathodes for Improved Cycling Stability, Electrochimica Acta 231: 363–70.
Li, Tiantian et al. (2023). Synergistic Strategy Using Doping and Polymeric Coating Enables High-Performance High-Nickel Layered Cathodes for Lithium-Ion Batteries, Journal of Physical Chemistry C 127(18): 8448–61.
Li, Yue et al. (2024). Past, Present and Future of High-Nickel Materials, Nano Energy 119(November 2023): 109070.
Li, Yunjiao et al. (2019). Towards Superior Cyclability of LiNi0.8Co0.1Mn0.1O2 Cathode Material for Lithium Ion Batteries via Synergetic Effects of Sb Modification, Journal of Alloys and Compounds 798: 93–103.
Lin, Bin, Zhaoyin Wen, Zhonghua Gu, and Xiaoxiong Xu. (2007). Preparation and Electrochemical Properties of Li[Ni1/3Co1/3Mn1−x/3Zrx/3]O2 Cathode Materials for Li-Ion Batteries.” Journal of Power Sources 174(2): 544–47.
Liu, Jie, and Zhengguang Zou. (2020). Structure, Modification, and Commercialization of High Nickel Ternary Material (LiNi0.8Co0.1Mn0.1O2 and LiNi0.8Co0.15Al0.05O2) for Lithium Ion Batteries, Journal of Solid State Electrochemistry 25: 387–410.
Liu, Junxiang et al. (2021). Recent Breakthroughs and Perspectives of High-Energy Layered Oxide Cathode Materials for Lithium Ion Batteries, Materials Today 43(March): 132–65. h
Liu, Wanmin et al. (2024). Dual-Coated Single-Crystal LiNi0.6Co0.2Mn0.2O2 as High-Performance Cathode Materials for Lithium-Ion Batteries, Journal of Solid State Electrochemistry (0123456789): 0–7.
Lu, Chao et al. (2016). Enhanced Electrochemical Performance of Li-Rich Li1.2Mn0.52Co0.08Ni0.2O2 Cathode Materials for Li-Ion Batteries by Vanadium Doping, Electrochimica Acta 209: 448–55.
Lu, Min et al. (2016). “The Effects of Ti4+-Fe3+ Co-Doping on Li[Ni1/3Co1/3Mn1/3]O2.” Solid State Ionics 298: 9–14.
Lüther, Marco Joes et al. (2024). Systematic ‘Apple-to-Apple’ Comparison of Single-Crystal and Polycrystalline Ni-Rich Cathode Active Materials: From Comparable Synthesis to Comparable Electrochemical Conditions, Small Structures 2400119: 1–12.
Ma, Jianyao et al. (2025). An Ultra-High Nickel Cobalt-Free Cathode Material toward High-Energy and Long-Cycle Stable Li-Ion Batteries: A Single-Crystal and Surface High-Entropy Design Strategy, Journal of Materials Chemistry A.
Meng, Jingke, Ge Qu, and Yunhui Huang. (2023). Stabilization Strategies for High-Capacity NCM Materials Targeting for Safety and Durability Improvements, eTransportation 16.
Milewska, A, and J Molenda. (2012). Influence of Co Substitution and Cu Addition on Structural, Electrical, Tran A. Milewska, J. Molenda, Solid State Ionics 2012, 225, 551.
Mo, Yan et al. (2020). The Promotion of Phase Transitions for Ni-Based Layered Cathode towards Enhanced High-Voltage Cycle Stability, Journal of Power Sources 477(July).
Mohamed, Nourhan, and Nageh K. Allam. (2020). Recent Advances in the Design of Cathode Materials for Li-Ion Batteries, RSC Advances 10(37): 21662–85.
Morchhale, Ayush et al. (2023). Coating Materials and Processes for Cathodes in Sulfide-Based All Solid-State Batteries, Current Opinion in Electrochemistry 39: 101251.
Nguyen, Trung Thien, Un-Hyuck Kim, Chong S Yoon, and Yang-Kook Sun. (2021). Enhanced Cycling Stability of Sn-Doped Li [Ni0.90Co0.05Mn0.05]O2 via Optimization of Particle Shape and Orientation, Chemical Engineering Journal 405: 126887.
Park, Kang Joon et al. (2018). Improved Cycling Stability of Li[Ni0.90Co0.05Mn0.05]O2 Through Microstructure Modification by Boron Doping for Li-Ion Batteries, Advanced Energy Materials 8(25): 0–9.
Park, Myounggu et al. (2010). A Review of Conduction Phenomena in Li-Ion Batteries, Journal of Power Sources 195(24): 7904–29.
Park, Sanghyuk et al. (2019). The Effect of Fe as an Impurity Element for Sustainable Resynthesis of Li[Ni1/3Co1/3Mn1/3]O2 Cathode Material from Spent Lithium-Ion Batteries, Electrochimica Acta 296: 814–22.
Roitzheim, Christoph et al. (2022). Boron in Ni-Rich NCM811 Cathode Material: Impact on Atomic and Microscale Properties, ACS Applied Energy Materials 5(1): 524–38.
Sattar, Tahir, Seung Hwan Lee, Bong Soo Jin, and Hyun Soo Kim. (2020). Influence of Mo Addition on the Structural and Electrochemical Performance of Ni-Rich Cathode Material for Lithium-Ion Batteries, Scientific Reports 10(1): 4–13.
Schipper, Florian et al. (2018). From Surface ZrO2 Coating to Bulk Zr Doping by High Temperature Annealing of Nickel‐rich Lithiated Oxides and Their Enhanced Electrochemical Performance in Lithium Ion Batteries, Advanced Energy Materials 8(4): 1701682.
Sim, Seoung Ju, Seung Hwan Lee, Bong Soo Jin, and Hyun Soo Kim. (2019). Improving the Electrochemical Performances Using a V-Doped Ni-Rich NCM Cathode, Scientific Reports 9(1): 1–8.
Song, Jun-Ho et al. (2018). Enhancement of High Temperature Cycling Stability in High-Nickel Cathode Materials with Titanium Doping, Journal of Industrial and Engineering Chemistry 68: 124–28.
Sun, Huabin et al. (2019). Enabling High Rate Performance of Ni-Rich Layered Oxide Cathode by Uniform Titanium Doping, Materials Today Energy 13: 145–51.
Sun, Yang-Kook et al. (2005). Synthesis and Characterization of Li[(Ni0.8Co0.1Mn0.1)0.8(Ni0. 5Mn0.5)0.2]O2 with the Microscale Core− Shell Structure as the Positive Electrode Material for Lithium Batteries, Journal of the American Chemical Society 127(38): 13411–18.
Sun, Yang Kook et al. (2012). Nanostructured High-Energy Cathode Materials for Advanced Lithium Batteries, Nature Materials 11(11): 942–47.
Tang, Zhongfeng et al. (2023). Safety Issues of Layered Nickel-Based Cathode Materials for Lithium-Ion Batteries: Origin, Strategies and Prospects, Batteries 9(3).
Tao, Qiqi et al. (2021). Understanding the Ni-Rich Layered Structure Materials for High-Energy Density Lithium-Ion Batteries, Materials Chemistry Frontiers 5(6): 2607–22.
Tian, Ruiyuan et al. (2015). Drastically Enhanced High-Rate Performance of Carbon-Coated LiFePO4 Nanorods Using a Green Chemical Vapor Deposition (CVD) Method for Lithium Ion Battery: A Selective Carbon Coating Process, ACS Applied Materials & Interfaces 7(21): 11377–86.
Wang, Jiayi et al. (2023). Doping Strategy in Nickel-Rich Layered Oxide Cathode for Lithium-Ion Battery, Renewables 1(3): 316–40.
Wang, Meng et al. (2010). Characterization of Yttrium Substituted LiNi0.33Mn 0.33Co0.33O2 Cathode Material for Lithium Secondary Cells, Electrochimica Acta 55(28): 8815–20.
Wang, Yang-Yang et al. (2021). Elucidating the Effect of the Dopant Ionic Radius on the Structure and Electrochemical Performance of Ni-Rich Layered Oxides for Lithium-Ion Batteries, ACS Applied Materials & Interfaces 13(47): 56233–41.
Weigel, Tina et al. (2019). Structural and Electrochemical Aspects of LiNi0.8Co0.1Mn0.1O2 Cathode Materials Doped by Various Cations, ACS Energy Letters 4(2): 508–16.
Wu, Bin, and Wei Lu. (2017). Mechanical Modeling of Particles with Active Core–Shell Structures for Lithium-Ion Battery Electrodes, The Journal of Physical Chemistry C 121(35): 19022–30.
Wu, Liping et al. (2020). Improvement of Electrochemical Reversibility of the Ni-Rich Cathode Material by Gallium Doping, Journal of Power Sources 445: 227337.
Wu, Qian et al. (2020). Improving LiNixCoyMn1−x−yO2 Cathode Electrolyte Interface under High Voltage in Lithium Ion Batteries, Nano Select 1(1): 111–34.
Xu, Gui Liang et al. (2020). Challenges and Strategies to Advance High-Energy Nickel-Rich Layered Lithium Transition Metal Oxide Cathodes for Harsh Operation, Advanced Functional Materials 30(46).
Xu, Tianmei et al. (2024). Advancements in Addressing Microcrack Formation in Ni–Rich Layered Oxide Cathodes for Lithium–Ion Batteries, ChemElectroChem c: 1–8.
Xu, Yuanlai et al. (2022). Surface Coating and Doping of Single-Crystal LiNi0.5Co0.2Mn0.3O2 for Enhanced High-Voltage Electrochemical Performances via Chemical Vapor Deposition, Journal of Electroanalytical Chemistry 914: 116286.
Yang, Wen et al. (2022). Ta Induced Fine Tuning of Microstructure and Interface Enabling Ni-Rich Cathode with Unexpected Cyclability in Pouch-Type Full Cell, Nano Energy 104: 107880.
Yang, Zuguang et al. (2017). Effect of Niobium Doping on the Structure and Electrochemical Performance of LiNi0.5Co0.2Mn0.3O2 Cathode Materials for Lithium Ion Batteries, Ceramics International 43(4): 3866–72.
Yuan, An et al. (2020). High Performance of Phosphorus and Fluorine Co-Doped LiNi0.8Co0.1Mn0.1O2 as a Cathode Material for Lithium Ion Batteries, Journal of Alloys and Compounds 844: 156210.
Yue, Bin et al. (2018). Au-Doped Li1.2Ni0.7Co0.1Mn0.2O2 Electrospun Nanofibers: Synthesis and Enhanced Capacity Retention Performance for Lithium-Ion Batteries, RSC Advances 8(8): 4112–18.
Yue, Ruyun et al. (2021). Trace Nb-Doped Na0.7Ni0.3Co0.1Mn0.6O2 with Suppressed Voltage Decay and Enhanced Low Temperature Performance, Chinese Chemical Letters 32(2): 849–5.
Zhang, Xiaozhen et al. (2022). Enhancing Cycle Life of Nickel-Rich LiNi0.9Co0.05Mn0.05O2 via a Highly Fluorinated Electrolyte Additive - Pentafluoropyridine, Energy Materials 1(1): 100005.
Zhang, Xueqian, Yali Xiong, Mengfei Dong, and Zhiguo Hou. (2019). Pb-Doped Lithium-Rich Cathode Material for High Energy Density Lithium-Ion Full Batteries, Journal of The Electrochemical Society 166(13): A2960.
Zhang, Yafeng, Ling Duan, and Jiajia Zhang. (2021). Superior Electrochemical Properties of Zirconium and Fluorine Co‐doped Li1.20[Mn0.54Ni0.13Co0.13]O2 as Cathode Material for Lithium Ion Batteries, Journal of Materials Science: Materials in Electronics 32(4): 4380–92.
Zhang, Yuxuan, Jae Chul Kim, Han Wook Song, and Sunghwan Lee. (2023). Recent Achievements toward the Development of Ni-Based Layered Oxide Cathodes for Fast-Charging Li-Ion Batteries, Nanoscale 15(9): 4195–4218.
Zheng, Xiangyi et al. (2023). Nickel-Rich Layered Oxide Cathodes for Lithium-Ion Batteries: Failure Mechanisms and Modification Strategies, Journal of Energy Storage 58(July 2022): 106405.
ZHONG, Shengkui et al. (2011). Synthesis and Electrochemical Properties of Ce-Doped LiNi1/3Mn1/3Co1/3O2 Cathode Material for Li-Ion Batteries, Journal of Rare Earths 29(9): 891–95.
Zhu, Huali et al. (2018). Enhanced High Voltage Performance of Chlorine/Bromine Co-Doped Lithium Nickel Manganese Cobalt Oxide, Crystals 8(11).
Zhu, Jie et al. (2019). Enhanced Electrochemical Performance of Li3PO4 Modified Li[Ni0.8Co0.1Mn0.1]O2 Cathode Material via Lithium-Reactive Coating, Journal of Alloys and Compounds 773: 112–20.
Zhu, Yizhou, Xingfeng He, and Yifei Mo. (2015). Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations, ACS applied materials & interfaces 7(42): 23685–93.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 YOLA BERTILSYA HENDRI

This work is licensed under a Creative Commons Attribution 4.0 International License.