RORANO: KOMBINASI EKSTRAK DAUN INSULIN (COSTUS IGNEUS), KUNYIT (CURCUMA LONGA L.), DAN BIJI PALA (MYRISTICA FRAGRANS HOUTT.) SEBAGAI ANTIOKSIDAN
Bahasa Indonesia
DOI:
https://doi.org/10.36526/jc.v7i2.6114Keywords:
Rorano, Extracts Of Insulin Leaves (Costus Igneus), Turmeric (Curcuma Longa L.), Nutmeg Seeds (Myristica Fragrans Houtt), Antioxidant ActivityAbstract
Senyawa reaktif yang memiliki elektron tidak berpasangan dikenal sebagai radikal bebas. Stres oksidatif, yang dapat menyebabkan kerusakan sel dan dianggap sebagai faktor penyebab sejumlah penyakit degeneratif, termasuk diabetes melitus, kanker, gangguan kardiovaskular, dan kondisi neurodegeneratif, dapat disebabkan oleh ketidakseimbangan antioksidan selama proses metabolisme. Zat bioaktif dengan efek farmakologis, termasuk aktivitas antioksidan alami, telah ditemukan dalam ekstrak daun insulin ( Costus Igneus ), kunyit ( Curcuma longa L. ) dan biji pala ( Myristica fragrans Houtt ). Untuk menilai kemampuan antioksidan dari ekstrak individu dan campuran yang dibuat menggunakan formula A dan B, tujuan penelitian ini adalah untuk menghitung nilai IC 50. Untuk mengukur aktivitas antioksidan, digunakan teknik 2,2-difenil-1-pikrilhidrazil (DPPH). Daun insulin, kunyit, dan biji pala menghasilkan ekstrak etanol dengan rendemen masing-masing 25,2%, 29,6%, dan 29,2%. Semua ekstrak mengandung senyawa fenolik, flavonoid, dan alkaloid, berdasarkan skrining fitokimia. Formula A dan formula B menunjukkan nilai IC50 masing -masing 113,98 µg/mL dan 108,74 µg/mL, sedangkan nilai IC50 untuk daun insulin, kunyit, dan biji pala masing-masing adalah 106,96 µg/mL, 117,90 µg/mL, dan 108,14 µg/mL. Hasil penelitian menunjukkan bahwa tidak terdapat variasi yang signifikan antara nilai IC50 masing- masing ekstrak dan campurannya. Oleh karena itu, penelitian tambahan harus dilakukan untuk memeriksa potensi efek sinergis terkait dengan regenerasi antioksidan, mekanisme pembersihan ekstrak radikal radikal, dan stabilitas serta ketersediaan bahan aktif hayati.
References
Chandimali, N. et al. (2025) ‘Free radicals and their impact on health and antioxidant defenses: a review’, Cell Death Discovery, 11(1), p. 19. Available at: https://doi.org/10.1038/s41420-024-02278-8.
Dhanani, T. et al. (2017) ‘Effect of extraction methods on yield, phytochemical constituents and antioxidant activity of Withania somnifera’, Arabian Journal of Chemistry, 10, pp. S1193–S1199. Available at: https://doi.org/https://doi.org/10.1016/j.arabjc.2013.02.015.
Hegde, P.K., Rao, H.A. and Rao, P.N. (2014) ‘A review on Insulin plant (Costus igneus Nak).’, Pharmacognosy reviews, 8(15), pp. 67–72. Available at: https://doi.org/10.4103/0973-7847.125536.
Jiménez-Ortega, L.A. et al. (2024) ‘Synergistic Antioxidant Activity in Deep Eutectic Solvents: Extracting and Enhancing Natural Products’, ACS Food Science & Technology, 4(12), pp. 2776–2798. Available at: https://doi.org/10.1021/acsfoodscitech.4c00488.
Kemenkes (2017) ‘Farmakope Herbal Indonesia, Jilid II’, pp. 163–167. Available at: https://doi.org/10.1201/b12934-13.
Martemucci, G. et al. (2022) ‘Free Radical Properties, Source and Targets, Antioxidant Consumption and Health’, Oxygen, 2(2), pp. 48–78. Available at: https://doi.org/10.3390/oxygen2020006.
Marton, L.T. et al. (2021) ‘The Effects of Curcumin on Diabetes Mellitus: A Systematic Review.’, Frontiers in endocrinology, 12, p. 669448. Available at: https://doi.org/10.3389/fendo.2021.669448.
Maryam, S. et al. (2023) ‘Analysis of Vitamin C and Antioxidant Activity of Capsicum frutescens L. and Capsicum annuum L.’, Indonesian Journal of Pharmaceutical Science and Technology, 1(1). Available at: https://doi.org/10.24198/ijpst.v0i0.46082.
Nimse, S.B. and Pal, D. (2015) ‘Free radicals, natural antioxidants, and their reaction mechanisms’, RSC Adv., 5(35), pp. 27986–28006. Available at: https://doi.org/10.1039/C4RA13315C.
Olvera-Aguirre, G. et al. (2022) ‘Effect of Extraction Type on Bioactive Compounds and Antioxidant Activity of Moringa oleifera Lam. Leaves’, Agriculture, 12(9). Available at: https://doi.org/10.3390/agriculture12091462.
Pivari, F. et al. (2019) ‘Curcumin and Type 2 Diabetes Mellitus: Prevention and Treatment’, Nutrients, 11(8). Available at: https://doi.org/10.3390/nu11081837.
Sari, B.P. and Kustiawan, P.M. (2023) ‘ANTIOXIDANT ACTIVITY OF EXTRACT COMBINATION FROM Averrhoa bilimbi L. LEAVES AND STINGLESS BEE HONEY’, Indonesian Journal of Pharmaceutical Science and Technology, 1(1), pp. 28–34. Available at: https://doi.org/10.24198/ijpst.v0i0.45987.
Solikah, W. (2024) ‘Standarisasi Ekstrak Etanol Biji Pala (Myristica fragrans Houtt)’, INPHARNMED Journal (Indonesian Pharmacy and Natural Medicine Journal), 7, p. 74. Available at: https://doi.org/10.21927/inpharnmed.v7i2.3877.
Sulistyo, S.B. and Haryanti, P. (2020) ‘Regression analysis for determination of antioxidant activity of coconut sap under various heating temperature and concentration of lysine addition’, Food Research, 4(4), pp. 976–981. Available at: https://doi.org/10.26656/fr.2017.4(4).410.
Tran, N., Pham, B. and Le, L. (2020) ‘Bioactive Compounds in Anti-Diabetic Plants: From Herbal Medicine to Modern Drug Discovery’, Biology, 9(9). Available at: https://doi.org/10.3390/biology9090252.
Villanueva-Bermejo, D. et al. (2024) ‘Theoretical framework to evaluate antioxidant synergistic effects from the coextraction of marjoram, rosemary and parsley’, Food Chemistry, 437, p. 137919. Available at: https://doi.org/https://doi.org/10.1016/j.foodchem.2023.137919.
Yadav, M., Sahu, B. and Sahu, M. (2025) ‘Costus igneus: A Versatile Herbal Remedy for Multiple Health Conditions’, Chemistry & Biodiversity, 22(4), p. e202402220. Available at: https://doi.org/https://doi.org/10.1002/cbdv.202402220.
Zamakshshari, N. et al. (2021) ‘Effect of extraction procedure on the yield and biological activities of hydroxychavicol from Piper betle L. leaves’, Journal of Applied Research on Medicinal and Aromatic Plants, 24, p. 100320. Available at: https://doi.org/https://doi.org/10.1016/j.jarmap.2021.100320.
Zhang, L. et al. (2022) ‘Study on Synergistic Antioxidant Effect of Typical Functional Components of Hydroethanolic Leaf Extract from Ginkgo Biloba In Vitro’, Molecules, 27(2). Available at: https://doi.org/10.3390/molecules27020439.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Zulkifli Tuara, Fitriana Ibrahim, Rizky Gusti Pratiwi, Nur Fita Adistianingsih Naser, Feni Sari Afriani

This work is licensed under a Creative Commons Attribution 4.0 International License.