A COMPREHENSIVE REVIEW OF VACCINE ADJUVANTS: CURRENT APPLICATIONS, DEVELOPMENT, AND IN SILICO DESIGN

Authors

  • Nikmatia Herfena Universitas Riau
  • Eka Gunarti Ningsih Bioinformatics Research Center
  • Widya Tania Artha Universitas Riau
  • Ilham Ardatul Putra Universitas Riau
  • Nur Afriana Universitas Riau

DOI:

https://doi.org/10.36526/jc.v7i2.5994

Keywords:

Adjuvant, In Silico, Vaccine

Abstract

Adjuvants play a crucial role in modern vaccine formulations by enhancing immune responses, prolonging protection, and reducing the required antigen dose. Although several adjuvants have been globally licensed, the development of novel adjuvants still faces major challenges such as unpredictable immunogenicity, potential toxicity, and high in vivo testing costs. In silico approaches offer promising solutions for accelerating adjuvant design and validation in a more efficient and targeted manner. This review summarizes recent advances in computational methods for adjuvant development, including epitope prediction, molecular docking, molecular dynamics simulation, and the application of artificial intelligence. It also discusses currently licensed adjuvants and highlights case studies involving in silico-designed immune-receptor agonists such as Toll-like-receptor (TLR) ligands. Integrating empirical and bioinformatic strategies is expected to create new opportunities for developing safer, more specific, and personalized vaccine adjuvants. Key challenges and future research directions are also identified to optimize the incorporation of in silico approaches into global vaccine innovation.

References

Ali, M. C., Khatun, M. S., Jahan, S. I., Das, R., Munni, Y. A., Rahman, M. M., & Dash, R. (2022). In silico design of epitope-based peptide vaccine against non-typhoidal Salmonella through immunoinformatic approaches. Journal of Biomolecular Structure and Dynamics, 40(21), 10696–10714. doi:10.1080/07391102.2021.1947381

Brewer, J. M., Conacher, M., Satoskar, A., Bluethmann, H., & Alexander, J. (1996). In interleukin-4-deficient mice, alum not only generates T helper 1 responses equivalent to Freund’s complete adjuvant, but continues to induce T helper 2 cytokine production. European Journal of Immunology, 26(9), 2062–2066. doi:10.1002/eji.1830260915

Calabro, S., Tritto, E., Pezzotti, A., Taccone, M., Muzzi, A., Bertholet, S., … Seubert, A. (2013). The adjuvant effect of MF59 is due to the oil-in-water emulsion formulation, none of the individual components induce a comparable adjuvant effect. Vaccine, 31(33), 3363–3369. doi:10.1016/j.vaccine.2013.05.007

Chippaux, J. (2024). Gaston Ramon’s Big Four.

Coffman, R. L., Sher, A., & Seder, R. A. (2010). Vaccine adjuvants: Putting innate immunity to work. Immunity, 33(4), 492–503. doi:10.1016/j.immuni.2010.10.002

Cox, J. C., & Coulter, A. R. (1997). Adjuvants - A classification and review of their modes of action. Vaccine, 15(3), 248–256. doi:10.1016/S0264-410X(96)00183-1

Didierlaurent, A. M., Morel, S., Lockman, L., Giannini, S. L., Bisteau, M., Carlsen, H., … Garcon, N. (2009). AS04, an Aluminum Salt- and TLR4 Agonist-Based Adjuvant System, Induces a Transient Localized Innate Immune Response Leading to Enhanced Adaptive Immunity. The Journal of Immunology, 183(10), 6186–6197. doi:10.4049/jimmunol.0901474

Fabrizi, F., Tarantino, A., Castelnovo, C., Martin, P., & Messa, P. G. (2015). Recombinant Hepatitis B Vaccine Adjuvanted With AS04 in Dialysis Patients: A Prospective Cohort Study. Kidney and Blood Pressure Research, 40(6), 584–592. doi:10.1159/000368534

Farhadi, T., Ovchinnikov, R. S., & Mehdi, M. (2016). In silico designing of some agonists of toll-like receptor 5 as a novel vaccine adjuvant candidates. Network Modeling Analysis in Health Informatics and Bioinformatics, 1–10. doi:10.1007/s13721-016-0138-1

Firmansyah, M. A., Susilo, A., Haryanti, S. D., & Herowati, R. (2021). Desain Vaksin Berbasis Epitop dengan Pendekatan Bioinformatika untuk Menekan Glikoprotein Spike SARS-CoV-2 Epitope-Based Vaccine Design with Bioinformatics Approach to Suppress Spike Glycoprotein of SARS-CoV-2 1 . PENDAHULUAN Dunia saat ini memerangi pand. Farmasi Indonesia, 18(2), 82–96.

Garon, N., Morel, S., Didierlaurent, A., Descamps, D., Wettendorff, M., & Van Mechelen, M. (2011). Development of an AS04-adjuvanted HPV vaccine with the adjuvant system approach. BioDrugs, 25(4), 217–226. doi:10.2165/11591760-000000000-00000

Ghimire, T. R. (2015). The mechanisms of action of vaccines containing aluminum adjuvants: an in vitro vs in vivo paradigm. SpringerPlus, 4(1). doi:10.1186/s40064-015-0972-0

Gillard, P., Chu, D. W. S., Hwang, S. J., Yang, P. C., Thongcharoen, P., Lim, F. S., … Roman, F. (2014). Long-term booster schedules with AS03A-adjuvanted heterologous H5N1 vaccines induces rapid and broad immune responses in Asian adults. BMC Infectious Diseases, 14(1). doi:10.1186/1471-2334-14-142

Giulini, M., Schneider, C., Cutting, D., Desai, N., Deane, C. M., & Bonvin, A. M. J. J. (2024). Towards the accurate modelling of antibody-antigen complexes from sequence using machine learning and information-driven docking. Bioinformatics, 40(10). doi:10.1093/bioinformatics/btae583

Gude, S., Abburi, S. K., Gali, P. K., & Gorlagunta, S. (2025). Advancing single-shot vaccine design through AI and computational models. Translational and Regulatory Sciences, 7(1), 8–14. doi:10.33611/trs.2025-002

Guo, W., Wang, X., Hu, J., Zhang, B., Zhao, L., Zhang, G., … Wang, S. (2025). In silico design of a multi-epitope vaccine against Mycobacterium avium subspecies paratuberculosis. Frontiers in Immunology, 16(January), 1–17. doi:10.3389/fimmu.2025.1505313

Gupta, A., & Chaphalkar, S. R. (2015). Vaccine adjuvants: The current necessity of life. Shiraz E Medical Journal, 16(7). doi:10.17795/semj28061

Gupta, S., Ansari, H. R., Gautam, A., & Raghava, G. P. S. (2013). Identification of B-cell epitopes in an antigen for inducing specific class of antibodies. Biology Direct, 8(1), 1–15. doi:10.1186/1745-6150-8-27

Guy, B. (2007). The perfect mix: Recent progress in adjuvant research. Nature Reviews Microbiology, 5(7), 505–517. doi:10.1038/nrmicro1681

Hager, K. J., Pérez Marc, G., Gobeil, P., Diaz, R. S., Heizer, G., Llapur, C., … Ward, B. J. (2022). Efficacy and Safety of a Recombinant Plant-Based Adjuvanted Covid-19 Vaccine. New England Journal of Medicine, 386(22), 2084–2096. doi:10.1056/nejmoa2201300

Hashempour, A., Khodadad, N., Akbarinia, S., Ghasabi, F., Ghasemi, Y., Matin Karbalaei Ali Nazar, M., & Falahi, S. (2024). Reverse vaccinology approaches to design a potent multiepitope vaccine against the HIV whole genome: immunoinformatic, bioinformatics, and molecular dynamics approaches. BMC Infectious Diseases, 24(1). doi:10.1186/s12879-024-09951-4

He, Y., & Xiang, Z. (2013). In Silico Models for Drug Discovery, 993, 115–127. doi:10.1007/978-1-62703-342-8

Huang, L. (2005). A support vector machine approach for prediction of T cell epitopes. Proceedings of the Third Asia-Pacific, 1–10. Retrieved from http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:A+SUPPORT+VECTOR+MACHINE+APPROACH+FOR+PREDICTION+OF+T+CELL#1

Kayser, V., & Ramzan, I. (2021). Vaccines and vaccination: history and emerging issues. Human Vaccines and Immunotherapeutics, 17(12), 5255–5268. doi:10.1080/21645515.2021.1977057

Kharisma, V. D., Widodo, N., Ansori, A. N. M., & Nugraha, A. P. (2020). A vaccine candidate of zika virus (ZIKV) from polyvalent conserved b-cell epitope on viral glycoprotein: In silico approach. Biochemical and Cellular Archives, 20, 2785–2793. doi:10.35124/bca.2020.20.S1.2785

Khosasih, A. E. (2023). Pengembangan Vaksin Malaria RTS,S/AS01. Cermin Dunia Kedokteran, 50(5), 274–277. doi:10.55175/cdk.v50i5.891

Kim, J. Y., Rosenberger, M. G., Rutledge, N. S., & Esser-Kahn, A. P. (2023). Next-Generation Adjuvants: Applying Engineering Methods to Create and Evaluate Novel Immunological Responses. Pharmaceutics, 15(6). doi:10.3390/pharmaceutics15061687

Kool, M., Fierens, K., & Lambrecht, B. N. (2012). Alum adjuvant: Some of the tricks of the oldest adjuvant. Journal of Medical Microbiology, 61(PART7), 927–934. doi:10.1099/jmm.0.038943-0

Lee, S., & Nguyen, M. T. (2015). Recent Advances of Vaccine Adjuvants for Infectious Diseases. Immune Network, 15(2), 51. doi:10.4110/in.2015.15.2.51

Maddeppungeng, M., Nurdin, A., Nency, Y. M., Sekartini, R., Medise, B. E., Soedjatmiko, S., … Tri Anantyo, D. (2024). Safety and immunogenicity of a SARS-CoV-2 recombinant protein subunit vaccine adjuvanted with Alum + CpG 1018 in healthy Indonesian adults: A multicenter, randomized, comparative, observer-blind, placebo-controlled phase 2 study. Human Vaccines & Immunotherapeutics, 20(1), 2429231. doi:10.1080/21645515.2024.2429231

Martin, L. B. B., Kikuchi, S., Rejzek, M., Owen, C., Reed, J., Orme, A., … Osbourn, A. (2024). Complete biosynthesis of the potent vaccine adjuvant QS-21. Nature Chemical Biology, 20(4), 493–502. doi:10.1038/s41589-023-01538-5

Moni, S. S., Abdelwahab, S. I., Jabeen, A., Elmobark, M. E., Aqaili, D., Ghoal, G., … Mohammad Alowayni, A. M. H. (2023). Advancements in Vaccine Adjuvants: The Journey from Alum to Nano Formulations. Vaccines, 11(11). doi:10.3390/vaccines11111704

Nagpal, G., Chaudhary, K., & Agrawal, P. (2017). Computer-aided prediction of antigen presenting cell modulators for designing peptide-based vaccine adjuvants.

Olawade, D. B., Teke, J., Fapohunda, O., Weerasinghe, K., Usman, S. O., Ige, A. O., & Clement David-Olawade, A. (2024). Leveraging artificial intelligence in vaccine development: A narrative review. Journal of Microbiological Methods, 224(July), 106998. doi:10.1016/j.mimet.2024.106998

Pasquale, A., Preiss, S., Silva, F., & Garçon, N. (2015). Vaccine Adjuvants: from 1920 to 2015 and Beyond. Vaccines, 3(2), 320–343. doi:10.3390/vaccines3020320

Petrovsky, N. (2015). Comparative Safety of Vaccine Adjuvants: A Summary of Current Evidence and Future Needs. Drug Safety, 38(11), 1059–1074. doi:10.1007/s40264-015-0350-4

Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera - A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. doi:10.1002/jcc.20084

Published, R., & Collective, A. B. (2018). Chapter 10 :, 277–278.

Pulendran, B., S. Arunachalam, P., & O’Hagan, D. T. (2021). Emerging concepts in the science of vaccine adjuvants. Nature Reviews Drug Discovery, 20(6), 454–475. doi:10.1038/s41573-021-00163-y

Putri, W. R., & Putri, W. R. (2023). Peranan Sistem Imunitas Melawan Infeksi Tuberkulosis Paru-Paru. Meditory : The Journal of Medical Laboratory, 11(1), 9–16. doi:10.33992/meditory.v11i1.2373

Rani, N. A., Robin, T. B., Prome, A. A., Ahmed, N., Moin, A. T., Patil, R. B., … Zinnah, K. M. A. (2024). Development of multi epitope subunit vaccines against emerging carp viruses Cyprinid herpesvirus 1 and 3 using immunoinformatics approach. Scientific Reports, 14(1), 1–22. doi:10.1038/s41598-024-61074-7

Romerio, A., Gotri, N., Franco, A. R., Artusa, V., Shaik, M. M., Pasco, S. T., … Peri, F. (2023). New Glucosamine-Based TLR4 Agonists: Design, Synthesis, Mechanism of Action, and In Vivo Activity as Vaccine Adjuvants. Journal of Medicinal Chemistry, 66(4), 3010–3029. doi:10.1021/acs.jmedchem.2c01998

Sivakumar, S. M., Safhi, M. M., Kannadasan, M., & Sukumaran, N. (2011). Vaccine adjuvants - Current status and prospects on controlled release adjuvancity. Saudi Pharmaceutical Journal, 19(4), 197–206. doi:10.1016/j.jsps.2011.06.003

Soleimani, S., Madadgar, O., Shahsavandi, S., Mahravani, H., & Lotfi, M. (2015). In silico analysis of HA2/Mx chimera peptide for developing an adjuvanted vaccine to induce immune responses against influenza viruses. Advanced Pharmaceutical Bulletin, 5(Suppl 1), 629–636. doi:10.15171/apb.2015.085

Stertman, L., Palm, A. K. E., Zarnegar, B., Carow, B., Lunderius Andersson, C., Magnusson, S. E., … Lövgren Bengtsson, K. (2023). The Matrix-MTM adjuvant: A critical component of vaccines for the 21st century. Human Vaccines and Immunotherapeutics, 19(1), 1–13. doi:10.1080/21645515.2023.2189885

Strobl, S., Hofbauer, K., Heine, H., & Zamyatina, A. (2022). Lipid A Mimetics Based on Unnatural Disaccharide Scaffold as Potent TLR4 Agonists for Prospective Immunotherapeutics and Adjuvants. Chemistry - A European Journal, 28(35). doi:10.1002/chem.202200547

Tait, D. R., Hatherill, M., Van Der Meeren, O., Ginsberg, A. M., Van Brakel, E., Salaun, B., … Roman, F. (2019). Final Analysis of a Trial of M72/AS01 E Vaccine to Prevent Tuberculosis . New England Journal of Medicine, 381(25), 2429–2439. doi:10.1056/nejmoa1909953

Tambunan, U. S. F., Parikesit, A. A., Hendra, Ichsan Taufik, R., Amelia, F., Syamsudin, … Syamsudin. (2009). In Silico Analysis of Envelope Dengue Virus-2 and Envelope Dengue Virus-3 Protein as the Backbone of Dengue Virus Tetravalent Vaccine by Using Homology Modeling Method. OnLine Journal of Biological Sciences, 9(1), 6–16. doi:10.3844/ojbs.2009.6.16

Tambunan, U. S. F., Parikesit, A. A., Tochary, T. A., & Sugiono, D. (2010). Studi in Silico Modifikasi Pos Translasi Disain Vaksin Chimeric Berbasis Virus Like Particles Human Papillomavirus Dengan Kapsid Virion L1. MAKARA of Science Series, 11(2). doi:10.7454/mss.v11i2.252

Tambunan, U. S. F., Pratiwi Sipahutar, F. R., Parikesit, A. A., & Kerami, D. (2016). Vaccine design for H5N1 based on B- and T-cell epitope predictions. Bioinformatics and Biology Insights, 10, 27–35. doi:10.4137/BBI.S38378

Toor, J., Echeverria-Londono, S., Li, X., Abbas, K., Carter, E. D., Clapham, H. E., … Gaythorpe, K. A. M. (2021). Lives saved with vaccination for 10 pathogens across 112 countries in a pre-covid-19 world. ELife, 10. doi:10.7554/eLife.67635

Ulrich, J. T., & Myers, K. R. (1995). Monophosphoryl Lipid A as an Adjuvant. Vaccine Design, 495–524. doi:10.1007/978-1-4615-1823-5_21

Vesikari, T., Knuf, M., Wutzler, P., Karvonen, A., Kieninger-Baum, D., Schmitt, H.-J., … Clemens, R. (2011). Oil-in-water emulsion adjuvant with influenza vaccine in young children. The New England Journal of Medicine, 365(15), 1406–1416. doi:10.1056/NEJMoa1010331

Wilson-Welder, J. H., P.Torres, M., Kipper, M. J., Mallapragada, S. K., Wannemueheler, M. J., & Nasasimhan, B. (2009). Vaccine Adjuvants: Current Challenges and Future Approaches. Physiology & Behavior, 98(4), 139–148. doi:10.1002/jps.21523.Vaccine

Wu, H., Zhao, C., Cheng, Z., Huang, W., & Yu, Y. (2025). In Silico Epitope-Based Peptide Vaccine Design Against Influenza B Virus: An Immunoinformatics Approach. Processes, 13(3), 1–19. doi:10.3390/pr13030681

Xing, J., Zhao, X., Li, X., Fang, R., Sun, M., Zhang, Y., & Song, N. (2025). The recent advances in vaccine adjuvants. Frontiers in Immunology, 16(May), 1–15. doi:10.3389/fimmu.2025.1557415

Zahroh, H., Ma’rup, A., Tambunan, U. S. F., & Parikesit, A. A. (2016). Immunoinformatics approach in designing epitopebased vaccine against meningitis-inducing bacteria (Streptococcus pneumoniae,Neisseria meningitidis,and Haemophilus influenzae type b). Drug Target Insights, 10, 19–29. doi:10.4137/DTI.S38458

Zhao, T., Cai, Y., Jiang, Y., He, X., Wei, Y., Yu, Y., & Tian, X. (2023). Vaccine adjuvants: mechanisms and platforms. Signal Transduction and Targeted Therapy, 8(1). doi:10.1038/s41392-023-01557-7

Published

2025-09-30

How to Cite

Herfena, N., Gunarti Ningsih, E., Tania Artha, W., Ardatul Putra, I., & Afriana, N. (2025). A COMPREHENSIVE REVIEW OF VACCINE ADJUVANTS: CURRENT APPLICATIONS, DEVELOPMENT, AND IN SILICO DESIGN. Jurnal Crystal : Publikasi Penelitian Kimia Dan Terapannya, 7(2), 237–250. https://doi.org/10.36526/jc.v7i2.5994