A COMPREHENSIVE REVIEW OF VACCINE ADJUVANTS: CURRENT APPLICATIONS, DEVELOPMENT, AND IN SILICO DESIGN
DOI:
https://doi.org/10.36526/jc.v7i2.5994Keywords:
Adjuvant, In Silico, VaccineAbstract
Adjuvants play a crucial role in modern vaccine formulations by enhancing immune responses, prolonging protection, and reducing the required antigen dose. Although several adjuvants have been globally licensed, the development of novel adjuvants still faces major challenges such as unpredictable immunogenicity, potential toxicity, and high in vivo testing costs. In silico approaches offer promising solutions for accelerating adjuvant design and validation in a more efficient and targeted manner. This review summarizes recent advances in computational methods for adjuvant development, including epitope prediction, molecular docking, molecular dynamics simulation, and the application of artificial intelligence. It also discusses currently licensed adjuvants and highlights case studies involving in silico-designed immune-receptor agonists such as Toll-like-receptor (TLR) ligands. Integrating empirical and bioinformatic strategies is expected to create new opportunities for developing safer, more specific, and personalized vaccine adjuvants. Key challenges and future research directions are also identified to optimize the incorporation of in silico approaches into global vaccine innovation.
References
Ali, M. C., Khatun, M. S., Jahan, S. I., Das, R., Munni, Y. A., Rahman, M. M., & Dash, R. (2022). In silico design of epitope-based peptide vaccine against non-typhoidal Salmonella through immunoinformatic approaches. Journal of Biomolecular Structure and Dynamics, 40(21), 10696–10714. doi:10.1080/07391102.2021.1947381
Brewer, J. M., Conacher, M., Satoskar, A., Bluethmann, H., & Alexander, J. (1996). In interleukin-4-deficient mice, alum not only generates T helper 1 responses equivalent to Freund’s complete adjuvant, but continues to induce T helper 2 cytokine production. European Journal of Immunology, 26(9), 2062–2066. doi:10.1002/eji.1830260915
Calabro, S., Tritto, E., Pezzotti, A., Taccone, M., Muzzi, A., Bertholet, S., … Seubert, A. (2013). The adjuvant effect of MF59 is due to the oil-in-water emulsion formulation, none of the individual components induce a comparable adjuvant effect. Vaccine, 31(33), 3363–3369. doi:10.1016/j.vaccine.2013.05.007
Chippaux, J. (2024). Gaston Ramon’s Big Four.
Coffman, R. L., Sher, A., & Seder, R. A. (2010). Vaccine adjuvants: Putting innate immunity to work. Immunity, 33(4), 492–503. doi:10.1016/j.immuni.2010.10.002
Cox, J. C., & Coulter, A. R. (1997). Adjuvants - A classification and review of their modes of action. Vaccine, 15(3), 248–256. doi:10.1016/S0264-410X(96)00183-1
Didierlaurent, A. M., Morel, S., Lockman, L., Giannini, S. L., Bisteau, M., Carlsen, H., … Garcon, N. (2009). AS04, an Aluminum Salt- and TLR4 Agonist-Based Adjuvant System, Induces a Transient Localized Innate Immune Response Leading to Enhanced Adaptive Immunity. The Journal of Immunology, 183(10), 6186–6197. doi:10.4049/jimmunol.0901474
Fabrizi, F., Tarantino, A., Castelnovo, C., Martin, P., & Messa, P. G. (2015). Recombinant Hepatitis B Vaccine Adjuvanted With AS04 in Dialysis Patients: A Prospective Cohort Study. Kidney and Blood Pressure Research, 40(6), 584–592. doi:10.1159/000368534
Farhadi, T., Ovchinnikov, R. S., & Mehdi, M. (2016). In silico designing of some agonists of toll-like receptor 5 as a novel vaccine adjuvant candidates. Network Modeling Analysis in Health Informatics and Bioinformatics, 1–10. doi:10.1007/s13721-016-0138-1
Firmansyah, M. A., Susilo, A., Haryanti, S. D., & Herowati, R. (2021). Desain Vaksin Berbasis Epitop dengan Pendekatan Bioinformatika untuk Menekan Glikoprotein Spike SARS-CoV-2 Epitope-Based Vaccine Design with Bioinformatics Approach to Suppress Spike Glycoprotein of SARS-CoV-2 1 . PENDAHULUAN Dunia saat ini memerangi pand. Farmasi Indonesia, 18(2), 82–96.
Garon, N., Morel, S., Didierlaurent, A., Descamps, D., Wettendorff, M., & Van Mechelen, M. (2011). Development of an AS04-adjuvanted HPV vaccine with the adjuvant system approach. BioDrugs, 25(4), 217–226. doi:10.2165/11591760-000000000-00000
Ghimire, T. R. (2015). The mechanisms of action of vaccines containing aluminum adjuvants: an in vitro vs in vivo paradigm. SpringerPlus, 4(1). doi:10.1186/s40064-015-0972-0
Gillard, P., Chu, D. W. S., Hwang, S. J., Yang, P. C., Thongcharoen, P., Lim, F. S., … Roman, F. (2014). Long-term booster schedules with AS03A-adjuvanted heterologous H5N1 vaccines induces rapid and broad immune responses in Asian adults. BMC Infectious Diseases, 14(1). doi:10.1186/1471-2334-14-142
Giulini, M., Schneider, C., Cutting, D., Desai, N., Deane, C. M., & Bonvin, A. M. J. J. (2024). Towards the accurate modelling of antibody-antigen complexes from sequence using machine learning and information-driven docking. Bioinformatics, 40(10). doi:10.1093/bioinformatics/btae583
Gude, S., Abburi, S. K., Gali, P. K., & Gorlagunta, S. (2025). Advancing single-shot vaccine design through AI and computational models. Translational and Regulatory Sciences, 7(1), 8–14. doi:10.33611/trs.2025-002
Guo, W., Wang, X., Hu, J., Zhang, B., Zhao, L., Zhang, G., … Wang, S. (2025). In silico design of a multi-epitope vaccine against Mycobacterium avium subspecies paratuberculosis. Frontiers in Immunology, 16(January), 1–17. doi:10.3389/fimmu.2025.1505313
Gupta, A., & Chaphalkar, S. R. (2015). Vaccine adjuvants: The current necessity of life. Shiraz E Medical Journal, 16(7). doi:10.17795/semj28061
Gupta, S., Ansari, H. R., Gautam, A., & Raghava, G. P. S. (2013). Identification of B-cell epitopes in an antigen for inducing specific class of antibodies. Biology Direct, 8(1), 1–15. doi:10.1186/1745-6150-8-27
Guy, B. (2007). The perfect mix: Recent progress in adjuvant research. Nature Reviews Microbiology, 5(7), 505–517. doi:10.1038/nrmicro1681
Hager, K. J., Pérez Marc, G., Gobeil, P., Diaz, R. S., Heizer, G., Llapur, C., … Ward, B. J. (2022). Efficacy and Safety of a Recombinant Plant-Based Adjuvanted Covid-19 Vaccine. New England Journal of Medicine, 386(22), 2084–2096. doi:10.1056/nejmoa2201300
Hashempour, A., Khodadad, N., Akbarinia, S., Ghasabi, F., Ghasemi, Y., Matin Karbalaei Ali Nazar, M., & Falahi, S. (2024). Reverse vaccinology approaches to design a potent multiepitope vaccine against the HIV whole genome: immunoinformatic, bioinformatics, and molecular dynamics approaches. BMC Infectious Diseases, 24(1). doi:10.1186/s12879-024-09951-4
He, Y., & Xiang, Z. (2013). In Silico Models for Drug Discovery, 993, 115–127. doi:10.1007/978-1-62703-342-8
Huang, L. (2005). A support vector machine approach for prediction of T cell epitopes. Proceedings of the Third Asia-Pacific, 1–10. Retrieved from http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:A+SUPPORT+VECTOR+MACHINE+APPROACH+FOR+PREDICTION+OF+T+CELL#1
Kayser, V., & Ramzan, I. (2021). Vaccines and vaccination: history and emerging issues. Human Vaccines and Immunotherapeutics, 17(12), 5255–5268. doi:10.1080/21645515.2021.1977057
Kharisma, V. D., Widodo, N., Ansori, A. N. M., & Nugraha, A. P. (2020). A vaccine candidate of zika virus (ZIKV) from polyvalent conserved b-cell epitope on viral glycoprotein: In silico approach. Biochemical and Cellular Archives, 20, 2785–2793. doi:10.35124/bca.2020.20.S1.2785
Khosasih, A. E. (2023). Pengembangan Vaksin Malaria RTS,S/AS01. Cermin Dunia Kedokteran, 50(5), 274–277. doi:10.55175/cdk.v50i5.891
Kim, J. Y., Rosenberger, M. G., Rutledge, N. S., & Esser-Kahn, A. P. (2023). Next-Generation Adjuvants: Applying Engineering Methods to Create and Evaluate Novel Immunological Responses. Pharmaceutics, 15(6). doi:10.3390/pharmaceutics15061687
Kool, M., Fierens, K., & Lambrecht, B. N. (2012). Alum adjuvant: Some of the tricks of the oldest adjuvant. Journal of Medical Microbiology, 61(PART7), 927–934. doi:10.1099/jmm.0.038943-0
Lee, S., & Nguyen, M. T. (2015). Recent Advances of Vaccine Adjuvants for Infectious Diseases. Immune Network, 15(2), 51. doi:10.4110/in.2015.15.2.51
Maddeppungeng, M., Nurdin, A., Nency, Y. M., Sekartini, R., Medise, B. E., Soedjatmiko, S., … Tri Anantyo, D. (2024). Safety and immunogenicity of a SARS-CoV-2 recombinant protein subunit vaccine adjuvanted with Alum + CpG 1018 in healthy Indonesian adults: A multicenter, randomized, comparative, observer-blind, placebo-controlled phase 2 study. Human Vaccines & Immunotherapeutics, 20(1), 2429231. doi:10.1080/21645515.2024.2429231
Martin, L. B. B., Kikuchi, S., Rejzek, M., Owen, C., Reed, J., Orme, A., … Osbourn, A. (2024). Complete biosynthesis of the potent vaccine adjuvant QS-21. Nature Chemical Biology, 20(4), 493–502. doi:10.1038/s41589-023-01538-5
Moni, S. S., Abdelwahab, S. I., Jabeen, A., Elmobark, M. E., Aqaili, D., Ghoal, G., … Mohammad Alowayni, A. M. H. (2023). Advancements in Vaccine Adjuvants: The Journey from Alum to Nano Formulations. Vaccines, 11(11). doi:10.3390/vaccines11111704
Nagpal, G., Chaudhary, K., & Agrawal, P. (2017). Computer-aided prediction of antigen presenting cell modulators for designing peptide-based vaccine adjuvants.
Olawade, D. B., Teke, J., Fapohunda, O., Weerasinghe, K., Usman, S. O., Ige, A. O., & Clement David-Olawade, A. (2024). Leveraging artificial intelligence in vaccine development: A narrative review. Journal of Microbiological Methods, 224(July), 106998. doi:10.1016/j.mimet.2024.106998
Pasquale, A., Preiss, S., Silva, F., & Garçon, N. (2015). Vaccine Adjuvants: from 1920 to 2015 and Beyond. Vaccines, 3(2), 320–343. doi:10.3390/vaccines3020320
Petrovsky, N. (2015). Comparative Safety of Vaccine Adjuvants: A Summary of Current Evidence and Future Needs. Drug Safety, 38(11), 1059–1074. doi:10.1007/s40264-015-0350-4
Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera - A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. doi:10.1002/jcc.20084
Published, R., & Collective, A. B. (2018). Chapter 10 :, 277–278.
Pulendran, B., S. Arunachalam, P., & O’Hagan, D. T. (2021). Emerging concepts in the science of vaccine adjuvants. Nature Reviews Drug Discovery, 20(6), 454–475. doi:10.1038/s41573-021-00163-y
Putri, W. R., & Putri, W. R. (2023). Peranan Sistem Imunitas Melawan Infeksi Tuberkulosis Paru-Paru. Meditory : The Journal of Medical Laboratory, 11(1), 9–16. doi:10.33992/meditory.v11i1.2373
Rani, N. A., Robin, T. B., Prome, A. A., Ahmed, N., Moin, A. T., Patil, R. B., … Zinnah, K. M. A. (2024). Development of multi epitope subunit vaccines against emerging carp viruses Cyprinid herpesvirus 1 and 3 using immunoinformatics approach. Scientific Reports, 14(1), 1–22. doi:10.1038/s41598-024-61074-7
Romerio, A., Gotri, N., Franco, A. R., Artusa, V., Shaik, M. M., Pasco, S. T., … Peri, F. (2023). New Glucosamine-Based TLR4 Agonists: Design, Synthesis, Mechanism of Action, and In Vivo Activity as Vaccine Adjuvants. Journal of Medicinal Chemistry, 66(4), 3010–3029. doi:10.1021/acs.jmedchem.2c01998
Sivakumar, S. M., Safhi, M. M., Kannadasan, M., & Sukumaran, N. (2011). Vaccine adjuvants - Current status and prospects on controlled release adjuvancity. Saudi Pharmaceutical Journal, 19(4), 197–206. doi:10.1016/j.jsps.2011.06.003
Soleimani, S., Madadgar, O., Shahsavandi, S., Mahravani, H., & Lotfi, M. (2015). In silico analysis of HA2/Mx chimera peptide for developing an adjuvanted vaccine to induce immune responses against influenza viruses. Advanced Pharmaceutical Bulletin, 5(Suppl 1), 629–636. doi:10.15171/apb.2015.085
Stertman, L., Palm, A. K. E., Zarnegar, B., Carow, B., Lunderius Andersson, C., Magnusson, S. E., … Lövgren Bengtsson, K. (2023). The Matrix-MTM adjuvant: A critical component of vaccines for the 21st century. Human Vaccines and Immunotherapeutics, 19(1), 1–13. doi:10.1080/21645515.2023.2189885
Strobl, S., Hofbauer, K., Heine, H., & Zamyatina, A. (2022). Lipid A Mimetics Based on Unnatural Disaccharide Scaffold as Potent TLR4 Agonists for Prospective Immunotherapeutics and Adjuvants. Chemistry - A European Journal, 28(35). doi:10.1002/chem.202200547
Tait, D. R., Hatherill, M., Van Der Meeren, O., Ginsberg, A. M., Van Brakel, E., Salaun, B., … Roman, F. (2019). Final Analysis of a Trial of M72/AS01 E Vaccine to Prevent Tuberculosis . New England Journal of Medicine, 381(25), 2429–2439. doi:10.1056/nejmoa1909953
Tambunan, U. S. F., Parikesit, A. A., Hendra, Ichsan Taufik, R., Amelia, F., Syamsudin, … Syamsudin. (2009). In Silico Analysis of Envelope Dengue Virus-2 and Envelope Dengue Virus-3 Protein as the Backbone of Dengue Virus Tetravalent Vaccine by Using Homology Modeling Method. OnLine Journal of Biological Sciences, 9(1), 6–16. doi:10.3844/ojbs.2009.6.16
Tambunan, U. S. F., Parikesit, A. A., Tochary, T. A., & Sugiono, D. (2010). Studi in Silico Modifikasi Pos Translasi Disain Vaksin Chimeric Berbasis Virus Like Particles Human Papillomavirus Dengan Kapsid Virion L1. MAKARA of Science Series, 11(2). doi:10.7454/mss.v11i2.252
Tambunan, U. S. F., Pratiwi Sipahutar, F. R., Parikesit, A. A., & Kerami, D. (2016). Vaccine design for H5N1 based on B- and T-cell epitope predictions. Bioinformatics and Biology Insights, 10, 27–35. doi:10.4137/BBI.S38378
Toor, J., Echeverria-Londono, S., Li, X., Abbas, K., Carter, E. D., Clapham, H. E., … Gaythorpe, K. A. M. (2021). Lives saved with vaccination for 10 pathogens across 112 countries in a pre-covid-19 world. ELife, 10. doi:10.7554/eLife.67635
Ulrich, J. T., & Myers, K. R. (1995). Monophosphoryl Lipid A as an Adjuvant. Vaccine Design, 495–524. doi:10.1007/978-1-4615-1823-5_21
Vesikari, T., Knuf, M., Wutzler, P., Karvonen, A., Kieninger-Baum, D., Schmitt, H.-J., … Clemens, R. (2011). Oil-in-water emulsion adjuvant with influenza vaccine in young children. The New England Journal of Medicine, 365(15), 1406–1416. doi:10.1056/NEJMoa1010331
Wilson-Welder, J. H., P.Torres, M., Kipper, M. J., Mallapragada, S. K., Wannemueheler, M. J., & Nasasimhan, B. (2009). Vaccine Adjuvants: Current Challenges and Future Approaches. Physiology & Behavior, 98(4), 139–148. doi:10.1002/jps.21523.Vaccine
Wu, H., Zhao, C., Cheng, Z., Huang, W., & Yu, Y. (2025). In Silico Epitope-Based Peptide Vaccine Design Against Influenza B Virus: An Immunoinformatics Approach. Processes, 13(3), 1–19. doi:10.3390/pr13030681
Xing, J., Zhao, X., Li, X., Fang, R., Sun, M., Zhang, Y., & Song, N. (2025). The recent advances in vaccine adjuvants. Frontiers in Immunology, 16(May), 1–15. doi:10.3389/fimmu.2025.1557415
Zahroh, H., Ma’rup, A., Tambunan, U. S. F., & Parikesit, A. A. (2016). Immunoinformatics approach in designing epitopebased vaccine against meningitis-inducing bacteria (Streptococcus pneumoniae,Neisseria meningitidis,and Haemophilus influenzae type b). Drug Target Insights, 10, 19–29. doi:10.4137/DTI.S38458
Zhao, T., Cai, Y., Jiang, Y., He, X., Wei, Y., Yu, Y., & Tian, X. (2023). Vaccine adjuvants: mechanisms and platforms. Signal Transduction and Targeted Therapy, 8(1). doi:10.1038/s41392-023-01557-7
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Nikmatia Herfena, Eka Gunarti Ningsih, Widya Tania Artha, Ilham Ardatul Putra, Nur Afriana

This work is licensed under a Creative Commons Attribution 4.0 International License.