STUDI PENGARUH VARIASI PH DAN KOLEKTOR PADA EFISIENSI FLOTASI MINERAL TEMBAGA SULFIDA
Abstract
This study aims to investigate the effect of pH variations and collector types on the recovery efficiency and Cu content in copper sulfide mineral samples. The experiment was conducted by varying the pH (6, 8, 10, and 12) and using different types of collectors, namely Xanthate, Potassium Amyl Xanthate (PAX), Diethyl Dithiophosphate (DTP), and a combination of PAX + DTP. Control variables included flotation time (5, 10, 15, 20, and 25 minutes), collector concentration at 50 mg/L, particle size <75 µm, and the use of Frother Methyl Isobutyl Carbinol (MIBC) at a concentration of 10 mg/L. Modifiers such as NaOH and H₂SO₄ were used to adjust the pH, while Copper Sulfate (CuSO₄) served as an activator and Sodium Metabisulfite (Na₂S₂O₅) as a depressant. The results showed that variations in pH and collector types significantly influenced recovery efficiency and Cu content in the concentrate. In general, the highest recovery efficiency was achieved at pH 10 with the combination of PAX + DTP, which resulted in a higher Cu content compared to other single collectors. This combination was able to improve recovery efficiency to over 75%, with Cu content in the concentrate reaching 28%. Therefore, the findings suggest the use of a collector combination and pH optimization as strategies to enhance the performance of copper sulfide flotation.
References
Bulut, G., Sirkeci, A. A., & Arı, B. (2021). Comparison of Anionic, Cationic and Amphoteric Collectors Used in Pyrite Flotation. Physicochemical Problems of Mineral Processing, 57(5), 15–22.
Cao, S., Cao, Y., Ma, Z., & Liao, Y. (2018). Metal Ion Release in Bastnaesite Flotation System and Implications for Flotation. Minerals 2018, Vol. 8, Page 203, 8(5), 203.
Chen, Y., Shi, Q., Feng, Q., Lu, Y., & Zhang, W. (2017). The Effect of Conditioning on the Flotation of Pyrrhotite in the Presence of Chlorite. Minerals, 7(7).
Cui, C. F., Xian, Y. J., Wen, S. M., & Wang, Y. J. (2015). Investigation on Copper Flotation from a Complex Copper Ore, Yunnan Province. Advanced Materials Research, 1094, 389–392.
Dhar, P., Thornhill, M., & Kota, H. R. (2019). Investigation of Copper Recovery from a New Copper Ore Deposit (Nussir) in Northern Norway: Dithiophosphates and Xanthate-Dithiophosphate Blend as Collectors. Minerals 2019, Vol. 9, Page 146, 9(3), 146.
El-Midany, A. A., Arafat, Y., & El-Faris, T. F. (2015). Rice starch as a depressant in phosphate reverse flotation. Starch - Stärke, 67(9–10), 745–751.
Fuerstenau, D. W., & Pradip. (2019). A Century of Research Leading to Understanding the Scientific Basis of Selective Mineral Flotation and Design of Flotation Collectors. Mining, Metallurgy and Exploration, 36(1), 3–20.
Ge, B., Liu, S., Nie, Q., Li, Q., & Zhu, C. (2013). Applying One-Stage Grinding and Flotation to Improving Copper Recovery of a Fine-Grained Cu-Mo Sulphide Ore. Separation Science and Technology, 48(12), 1900–1905.
Han, G., Su, S., Huang, Y., Peng, W., Cao, Y., & Liu, J. (2018). An Insight into Flotation Chemistry of Pyrite with Isomeric Xanthates: A Combined Experimental and Computational Study. Minerals, 8(4).
Hou, Y., Sobhy, A., & Wang, Y. (2020). Significance of reagents addition sequence on iron anionic reverse flotation and their adsorption characteristics using QCM-D. Physicochemical Problems of Mineral Processing, 57(1), 284–293.
Huangfu, M. ;, Hu, Y. ;, Zhou, Y. ;, Li, M. ;, Deng, J. ;, Li, S. ;, Peng, G., Matis, K. A., Sierra Fernández, C., Huangfu, M., Hu, Y., Zhou, Y., Li, M., Deng, J., Li, S., & Peng, G. (2023). Flotation Characteristics of Amphibole-Type Oxidized Iron Ore via Reverse Anionic Flotation. Processes 2023, Vol. 11, Page 2388, 11(8), 2388.
İzerdem, D., & Ertekin, Z. (2024). In Situ Characterization of the Locked Particle Behavior of Sulfide Minerals Using Non-Destructive Electrochemical Measurements. Deu Muhendislik Fakultesi Fen Ve Muhendislik, 26(77), 255–263.
Jimenez, G., Cabrera, P., Rodriguez, A., Cuervo, C., & Gutierrez, L. (2024). The Effect of an Anionic Polyacrylamide on the Flotation of Chalcopyrite, Enargite, and Bornite. Minerals 2024, Vol. 14, Page 634, 14(7), 634.
Kamoda, R., & Sanwani, E. (2023). Flotasi kasiterit dari bijih timah primer tipe skarn asal pulau belitung. Jurnal Teknologi Mineral Dan Batubara, 19(3), 141–161.
Kang, H., & Zhang, H. (2022). Enhanced Flotation Separation of Low-Rank Coal with a Mixed Collector: Experimental and Molecular Dynamics Simulation Study. ACS Omega, 7(38), 34239–34248.
Langa, N. T. N., Adeleke, A. A., Mendonidis, P., & Thubakgale, C. K. (2014). Evaluation of sodium isobutyl xanthate as a collector in the froth flotation of a carbonatitic copper ore. International Journal of Industrial Chemistry, 5(3–4), 107–110.
Matsuoka, H., Mitsuhashi, K., Kawata, M., & Tokoro, C. (2020). Derivation of Flotation Kinetic Model for Activated and Depressed Copper Sulfide Minerals. Minerals 2020, Vol. 10, Page 1027, 10(11), 1027.
Mcfadzean, B., Castelyn, D. G., & O’connor, C. T. (2012). The effect of mixed thiol collectors on the flotation of galena. Minerals Engineering, 36–38, 211–218.
Merzeg, F. A., Bezzi, N., Bouzidi, N., Narsis, S., Bait, N., Ladji, R., & Bachari, K. (2023). Reverse flotation process in double stage on the Algerian phosphate ore treatment. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 1, 61–66.
Micheau, C., Ueda, Y., Motokawa, R., Bauduin, P., Girard, L., & Diat, O. (2023). Foam Flotation of Clay Particles Using a Bifunctional Amine Surfactant. Langmuir, 39(31), 10965–10977.
Mondal, S., Acharjee, A., Mandal, U., & Saha, B. (2021). Froth flotation process and its application. Vietnam Journal of Chemistry, 59(4), 417–425.
Özün, S., & Ergen, G. (2019). Determination of Optimum Parameters for Flotation of Galena: Effect of Chain Length and Chain Structure of Xanthates on Flotation Recovery. ACS Omega, 4(1), 1516–1524.
Özün, S., & Ulutaş, Ş. (2019). Interfacial Behavior of Anionic/Cationic Flotation Collectors in Mixed Aqueous Solutions and Their Effect on Flotation Recovery of Quartz. Journal of Surfactants and Detergents, 22(1), 61–71.
Pan, G., Zou, D., & Wang, Z. (2021). Flotation of Smithsonite From Quartz Using Pyrophyllite Nanoparticles as the Natural Non-toxic Collector. Frontiers in Chemistry, 9, 743482.
Petrus, H. T. B. M., Hirajima, T., Sasaki, K., & Okamotob, H. (2011). Study of diethyl dithiophosphate adsorption on chalcopyrite and tennantite at varied pHs. Journal of Mining Science, 47(5), 695–702.
Sekhar, S. C. (2023). Process for Concentration of Low Grade Copper Ore - A Process Design. Journal of Chemistry: Education Research and Practice, 7(1), 473–476.
Shen, Y., Nagaraj, D. R., Farinato, R., & Somasundaran, P. (2016). Study of xanthate decomposition in aqueous solutions. Minerals Engineering, 93, 10–15.
Subandrio, S., Palit, C., Marwanza, I., I., E. F. B., & Juradi, M. I. (2022). Pengaruh Fraksi Ukuran dan pH Pada Flotasi Mineral Sulfida. Jurnal Geomine, 10(1), 13–20.
Wati, D. R., Subandrio, Dahani, W., & Palit, C. (2022). Analisis Pengaruh Peningkatan Kadar Pb Terhadap Penggunaan Dosis Reagen melalui Flotasi Selektif. Indonesian Mining and Energy Journal, 5(1), 9–16.
Yang, B., Tong, X., Xie, X., & Huang, L. (2021). Insight into the effect of galvanic interactions between sulfide minerals on the floatability and surface characteristics of pyrite. Physicochemical Problems of Mineral Processing, 57(2), 24–33.
Yang, B., Xie, X., Tong, X., & Huang, L. (2021). Influence of Terpenic Oil on Flotation Behavior of Sphalerite and Implication for the Selective Separation. Adsorption Science &Amp; Technology, 2021.
Yuan, J., Li, S., Ding, Z., Li, J., Yu, A., Wen, S., & Bai, S. (2023). Treatment Technology and Research Progress of Residual Xanthate in Mineral Processing Wastewater. Minerals, 13(3).
Copyright (c) 2025 Kostiawan Sukamto, Astin Lukum, Akram La Kilo

This work is licensed under a Creative Commons Attribution 4.0 International License.