Pengaruh Waktu Reaksi dan Konsentrasi Natrium Sitrat Sebagai reduktor dan Capping agent (CA) pada Sintesis Dan Gold Nano Partikels (AuNPs)

  • Eko Malis Universitas PGRI Banyuwangi
  • Heppy Findari
  • Rosyid r Universitas PGRI Banyuwangi
Keywords: Reduktor, nano Partikel, Capping Agent

Abstract

Telah dilakukan penelitian Sintesis Dan Karakterisasi Gold Nanopartikel (AuNPs) dengan agen pereduksi dan Capping Agent natrium sitrat. Sintesis AuNPs dilakukan pada suhu ruang, tanpa pengadukan, dan tanpa pengondisian pH. Material hasil preparasi dikarakterisasi dengan FTIR, TEM dan XRD. natrium sitrat   Capping Agent yang fungsinya mempertahankan partikel dalam ukuran nano dan menjaga agar tidak terjadi agregasi. Natrium sitrat dalam sintesis AuNPs digunakan sebagai reduktor dan sekaligus sebagai penstabil telah berhasil disintesis. Bentuk morfologi AuNPs dikarakterisasi dengan TEM menunjukkan keseluruhan nanopartikel yang terbentuk berbentuk bola, segitiga dan segienam serta tidak terbentuk klister-klaster antar partikel nano,  segienam tipis dengan ketebalan hanya sekitar 10 nm. Karakterisasi menggunakan XRD dilakukan untuk mengetahui komposisi fase dan struktur kristal dari AuNPs. Terdapat tiga jenis puncak karakteristik pada 2θ yang masing-masing terkonfirmasi pada 37,845; 44,026 dan 77,295º. Kestabilan AuNPs AuNPs yang telah disintesis dengan kondisi optimum diukur SPRnya pada hari ke-1, 2, 3, 4, minggu ke-1, minggu ke-2, hingga minggu ke-8. Kondisi optimum pada volume 6 mL HAuCl4 0,294 mM dan 3 mL natrium sitrat 0,340 mM, waktu reaksi sintesis AuNPs optimum pada menit ke-30

References

Ahmad, T., Irfan, M., Bustam, M.A., and Bhattacharjee, S., 2016, Effect of Reaction Time on Green Synthesis of Gold Nanoparticles by Using Aqueous Extract of Elaise Guineensis (Oil Palm Leaves), Procedia Eng., 148, 467–472.
Annur, S., Santosa, S.J., and Aprilita, N.H., 2018, PH dependence of size control in gold nanoparticles synthesized at room temperature, Orient. J. Chem., 34, 2305– 2312.
Anuradha, J., Abbasi, T., and Abbasi, S.A., 2015, An eco-friendly method of synthesizing gold nanoparticles using an otherwise worthless weed pistia (Pistia stratiotes L.), J. Adv. Res., 6, 711–720.
Boruah, J.S., Kalita, P., Chowdhury, D., and Barthakur, M., 2020, Conjugation of citrate capped gold nanoparticles with gabapentin to use as biosensor, Mater. Today Proc., 46, 6404–6408.
Byrne, L., Barker, J., Pennarun-Thomas, G., Diamond, D., and Edwards, S., 2000, Digital imaging as a detector for generic analytical measurements, TrAC - Trends Anal. Chem., 19, 517–522.
Cantrell, K., Erenas, M.M., De Orbe-Payá, I., and Capitán-Vallvey, L.F., 2010, Use of the hue parameter of the hue, saturation, value color space as a 82, 531–542. quantitative analytical parameter for bitonal optical sensors, Anal. Chem.,
Del Carmen Hurtado-Sánchez, M., Espinosa-Mansilla, A., Rodríguez-Cáceres, M.I., Martín-Tornero, E., and Durán-Merás, I., 2012, Development of a method for the determination of advanced glycation end products precursors by liquid chromatography and its application in human urine samples, J. Sep. Sci., 35, 2575–2584.
Chang, B.Y., 2012, Smartphone-based chemistry instrumentation: Digitization of colorimetric measurements, Bull. Korean Chem. Soc., 33, 549–552.
Chen, J.C., Kumar, A.S., Chung, H.H., Chien, S.H., Kuo, M.C., and Zen, J.M., 2006, An enzymeless electrochemical sensor for the selective determination of creatinine in human urine, Sensors Actuators, B Chem., 115, 473–480.
Chen, S., Fang, Y.M., Xiao, Q., Li, J., Li, S.B., Chen, H.J., Sun, J.J., and Yang, H.H., 2012, Rapid visual detection of aluminium ion using citrate capped gold nanoparticles, Analyst, 137, 2021–2023.
Cheng, W., Dong, S., and Wang, E., 2003, Synthesis and Self-Assembly of Cetyltrimethylammonium Bromide-Capped Gold Nanoparticles, Langmuir, 19, 9434–9439.
Chi, H., Liu, B., Guan, G., Zhang, Z., and Han, M.Y., 2010, A simple, reliable and sensitive colorimetric visualization of melamine in milk by unmodified gold nanoparticles, Analyst, 135, 1070–1075.
Contreras-Trigo, B., Díaz-García, V., Guzmán-Gutierrez, E., Sanhueza, I., Coelho, P., Godoy, S.E., Torres, S., and Oyarzún, P., 2018, Slight ph fluctuations in the gold nanoparticle synthesis process influence the performance of the citrate reduction method, Sensors (Switzerland), 18.
Fatimah, I., 2016, Green synthesis of silver nanoparticles using extract of Parkia speciosa Hassk pods assisted by microwave irradiation, J. Adv. Res., 7, 961–969.
Firdaus, M.L., Alwi, W., Trinoveldi, F., Rahayu, I., Rahmidar, L., and Warsito, K., 2014, Determination of Chromium and Iron Using Digital Image-based Colorimetry, Procedia Environ. Sci., 20, 298–304.
Ghosh, S.K., Pal, A., Kundu, S., Nath, S., and Pal, T., 2004, Fluorescence quenching of 1-methylaminopyrene near gold nanoparticles: Size regime dependence of the small metallic particles, Chem. Phys. Lett., 395, 366–372.
Guo, S. and Wang, E., 2007, Synthesis and electrochemical applications of gold nanoparticles, Anal. Chim. Acta, 598, 181–192.
Gustavo González, A. and Ángeles Herrador, M., 2007, A practical guide to analytical method validation, including measurement uncertainty and accuracy profiles, TrAC - Trends Anal. Chem., 26, 227–238.
Isaacs, S.R., Cutler, E.C., Park, J.S., Lee, T.R., and Shon, Y.S., 2005, Synthesis of tetraoctylammonium-protected gold nanoparticles with improved stability, Langmuir, 21, 5689–5692.
Krutyakov, Y.A., Kudrinskiy, A.A., Olenin, A.Y., and Lisichkin, G. V, 2008, Synthesis and properties of silver nanoparticles: advances and prospects, Russ. Chem. Rev., 77, 233–257.
Kumar, S., Gandhi, K.S., and Kumar, R., 2007, Modeling of formation of gold nanoparticles by citrate method, Ind. Eng. Chem. Res., 46, 3128–3136.
Lee, J.H., Choi, S.U.S., Jang, S.P., and Lee, S.Y., 2012, Production of aqueous spherical gold nanoparticles using conventional ultrasonic bath, Nanoscale Res. Lett., 7, 1–7.
Leiva, A., Bonardd, S., Pino, M., Saldías, C., Kortaberria, G., and Radić, D., 2015, Improving the performance of chitosan in the synthesis and stabilization of gold nanoparticles, Eur. Polym. J., 68, 419–431.
Lin, C., Tao, K., Hua, D., Ma, Z., and Zhou, S., 2013, Size effect of gold nanoparticles in catalytic reduction of p-nitrophenol with NaBH4, Molecules, 18, 12609–12620.
Lu, L., Zhang, J., and Yang, X., 2013, Simple and selective colorimetric detection of ypochlorite based on anti-aggregation of gold nanoparticles, Sensors Actuators, B Chem., 184, 189–195.
Malikova, N., Pastoriza-Santos, I., Schierhorn, M., Kotov, N.A., and Liz-Marzán, L.M., 2002, Layer-by-layer assembled mixed spherical and planar gold nanoparticles: Control of interparticle interactions, Langmuir, 18, 3694–3697.
Polte, J., Ahner, T.T., Delissen, F., Sokolov, S., Emmerling, F., Thünemann, A.F., and Kraehnert, R., 2010, Mechanism of Gold Nanoparticle Formation Citrate Synthesis,1296–1301.
Philip, D., 2008, Synthesis and spectroscopic characterization of gold nanoparticles, Pinto, V. V., Ferreira, M.J., Silva, R., Santos, H.A., Silva, F., dan Pereira, C.M., 2010, Long Time Effect on the Stability of Silver Nanoparticles in Aqueous Medium: Effect of the ynthesis and Storage Conditions, Colloids Surfaces A Physicochem. Eng. Asp., 364, 19–25.
Qin, L., Zeng, G., Lai, C., Huang, D., Xu, P., Zhang, C., Cheng M., Liu X., Liu S., Li B., dan Yi H., 2018, “Gold Rush” in Modern Science: Fabrication Strategies and Typical Advanced Applications of Gold Nanoparticles in Sensing, Coord. Chem. Rev., 359, 1–31.
Rajathi, 2012, Spectrochimica Acta Part A : Molecular and Biomolecular Spectroscopy Biosynthesis of antibacterial gold nanoparticles using brown alga , Stoechospermum marginatum ( kützing ), Spectrochim. ACTA PART A Mol. Biomol. Spectrosc., 99, 166–173.
Reinstein, D.Z., Archer, T.J., Silverman, R.H., and Coleman, D.J., 2006, Accuracy, repeatability, and reproducibility of Artemis very high-frequency digital ultrasound arc-scan lateral dimension measurements, J. Cataract Refract. Surg., 32, 1799–1802.
Seol, S.K., Kim, D., Jung, S., and Hwu, Y., 2011, Microwave synthesis of gold nanoparticles: Effect of applied microwave power and solution pH, Mater. Chem. Phys., 131, 331–335.
Shaikh, R., Memon, N., Solangi, A.R., Shaikh, H.I., Agheem, M.H., Ali, S.A., Shah, M.R., dan Kandhro, A., 2017, 2,3-Pyridine Dicarboxylic Acid Functionalized Gold Nanoparticles: Insight Into Experimental Conditions for Cr3+ Sensing, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., 173, 241–250.
Sharma, P., Semwal, V., and Gupta, B.D., 2019, Highly sensitive and selective localized surface plasmon resonance biosensor for detecting glutamate realized on optical fiber substrate using gold nanoparticles, Photonics Nanostructures - Fundam. Appl., 37, 100730.
Singh, A.K., Tiwari, R., Singh, V.K., Singh, P., Khadim, S.R., Singh, U., Laxmi, Srivastava, V., Hasan, S.H., and Asthana, R.K., 2019, Green synthesis of gold nanoparticles from Dunaliella salina, its characterization and in vitro anticancer activity on breast cancer cell line, J. Drug Deliv. Sci. Technol., 51, 164–176.
Turkevich, J., Stevenson, P.C., and Hillier, J., 1951, A study of the nucleation and growth processes in the synthesis of colloidal gold, Discuss. Faraday Soc., 11, 55–75.
Tyagi, H., Kushwaha, A., Kumar, A., and Aslam, M., 2011, PH-dependent synthesis of stabilized gold nanoparticles using ascorbic acid, Int. J. Nanosci., 10, 857–860.
Wang, Y., Li, Y.S., Zhang, Z., dan An, D., 2003, Surface-enhanced Raman Scattering of Some Water Insoluble Drugs in Silver Hydrosols, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., 59, 589–594
Yan, Y., Chen, K. Bin, Li, H.R., Hong, W., Hu, X. Bin, and Xu, Z., 2014, Capping effect of reducing agents and surfactants in synthesizing silver nanoplates, Trans. Nonferrous Met. Soc. China (English Ed., 24, 3732–3738.
Yoshimura, N., Sabir, A., Kubo, T., Lin, P.J.P., Clouse, M.E., and Hatabu, H., 2006, Correlation between image noise and body weight in coronary CTA with 16-row MDCT, Acad. Radiol., 13, 324–328.
Zahran, M.K., Ahmed, H.B., and El-Rafie, M.H., 2014, Alginate mediate for synthesis controllable sized AgNPs, Carbohydr. Polym., 111, 10–17.
Zha, J., Dong, C., Wang, X., Zhang, X., Xiao, X., and Yang, X., 2017, Green synthesis and characterization of monodisperse gold nanoparticles using Ginkgo Biloba leaf extract, Optik (Stuttg)., 144, 511–521.
Zhao, P., Li, N., and Astruc, D., 2013, State of the art in gold nanoparticle synthesis, Coord. Chem. Rev., 257, 638–665.
Zümreoglu-Karan, B., 2009, A rationale on the role of intermediate Au(III)-vitamin C complexation in the production of gold nanoparticles, J. Nanoparticle Res., 11, 1099–1105.
Published
2022-10-30
How to Cite
MalisE., FindariH., & rR. (2022). Pengaruh Waktu Reaksi dan Konsentrasi Natrium Sitrat Sebagai reduktor dan Capping agent (CA) pada Sintesis Dan Gold Nano Partikels (AuNPs). Jurnal Crystal : Publikasi Penelitian Kimia Dan Terapannya, 4(2), 65-74. https://doi.org/10.36526/jc.v4i2.2507