Pemanfaatan KONSORSIUM MIKROBA LIPOLITIK LOKAL UNTUK OPTIMALISASI AKTIVITAS LIPASE DALAM BIOREMEDIASI LIMBAH MINYAK GORENG
DOI:
https://doi.org/10.36526/biosense.v9i1.6479Keywords:
konsorsium mikroba lipolotik lokal, lipase, bioremediasi, limbah minyak gorengAbstract
Limbah minyak goreng bekas (WCO/FOG) menimbulkan penyumbatan, peningkatan COD/BOD, dan biaya pengelolaan tinggi, sementara melakukan bioremediasi kerap terhambat oleh matriks limbah yang kompleks dan kestabilan enzim yang rendah. Studi ini bertujuan mensintesis bukti tentang efektivitas konsorsium mikroba lipolitik lokal dalam mengoptimalkan aktivitas lipase dan meningkatkan kinerja bioremediasi WCO/FOG. Metode yang digunakan adalah tinjauan literatur sistematik (SLR) mengikuti PRISMA 2020 dengan penelusuran Scopus, Web of Science, PubMed, Dimensions, dan Google Scholar (2015-2025); skrining berpasangan; ekstraksi data terstruktur; penilaian kualitas (adaptasi JBI); serta sintesis naratif dan, bila homogenitas memadai, meta-analisis. Analisis juga memancarkan moderator: imobilisasi enzim, evolusi terarah , optimasi multivariabel , dan transfer massa (kLa/aerasi). Hasil menunjukkan sebagian besar penelitian melaporkan peningkatan aktivitas lipase dan penurunan FOG/COD yang substansial, dengan konsistensi kinerja lebih tinggi pada konsorsium lokal dibandingkan isolat tunggal. Imobilisasi meningkatkan stabilitas operasional dan siklus pemakaian, RSM memperjelas kondisi optimal dan meningkatkan, dan meningkatkan kLa kerusakan positif dengan laju degradasi. Keterbatasan utama meliputi heterogenitas satuan/pelaporan dan minimalnya analisis biaya/LCA, sementara bukti skala pilot mulai berkembang. Secara keseluruhan, strategi integrasi proses enzim konsorsium direkomendasikan untuk implementasi di IPAL/UMKM
References
[1] Williams, J. B., Clarkson, C., Mant, C., Drinkwater, A., & May, E. (2012). Fat, oil and grease deposits in sewers: Characterisation of deposits and formation mechanisms. Water Research, 46(19), 6319–6328. https://doi.org/10.1016/j.watres.2012.09.002
[2] Yusuf, H. H., et al. (2023). Tackling fat, oil, and grease (FOG) build-up in sewers. Science of the Total Environment, 902, 165919. https://doi.org/10.1016/j.scitotenv.2023.165919
[3] Kumar, S., Mathur, A., Singh, V., Nandy, S., Khare, S. K., et al. (2012). Bioremediation of waste cooking oil using a novel lipase produced by Penicillium chrysogenum SNP5. Bioresource Technology, 120, 300–304. https://doi.org/10.1016/j.biortech.2012.06.098
[4] Ortellado, L. E., Schimpf, A. R. A., Benítez, S. F., Villalba, L. L., Zapata, P. D., & Fonseca, M. I. (2025). Sustainable bioremediation of lipid-rich wastewater using a lipase from Penicillium rubens LBM 081. Water, 17(10), 1509. https://doi.org/10.3390/w17101509
[5] Okino-Delgado, C. H., & Prado, D. Z. (2017). Bioremediation of cooking oil waste using lipases from wastes. PLOS ONE, 12(10), e0186246. https://doi.org/10.1371/journal.pone.0186246
[6] Mongkolthanaruk, W., & Dharmsthiti, S. (2002). Biodegradation of lipid-rich wastewater by a mixed bacterial consortium. International Biodeterioration & Biodegradation, 50(2), 101–105. https://doi.org/10.1016/S0964-8305(02)00057-4
[7] Lu, M., Li, G., Xu, J., et al. (2022). Metagenomic screening for lipolytic genes reveals an ecology-clustered distribution pattern. Frontiers in Microbiology, 13, 851969. https://doi.org/10.3389/fmicb.2022.851969
[8] Karbalaei, M., Rezaee, S. A., & Farsiani, H. (2020). Pichia pastoris: A highly successful expression system for optimal synthesis of heterologous proteins. Journal of Cellular Physiology, 235(9), 5867–5881. https://doi.org/10.1002/jcp.29583
[9] Yu, S., Xu, Y., Liu, X., et al. (2023). Construction and testing of Yarrowia lipolytica recombinant protein expression chassis cells based on high-throughput screening and secretome. Microbial Cell Factories, 22, 196. https://doi.org/10.1186/s12934-023-02196-x
[10] Guan, L., Li, J., Xu, Z., & Li, S. (2020). Directed evolution of Pseudomonas fluorescens lipase with improved thermostability. Frontiers in Bioengineering and Biotechnology, 8, 1034. https://doi.org/10.3389/fbioe.2020.01034
[11] Ali, S., Borah, M., Misra, S., & Sahoo, D. (2023). The recent advances in the utility of microbial lipases: A review. Microorganisms, 11(2), 510. https://doi.org/10.3390/microorganisms11020510
[12] Ahmed, M. S., Ahmad, S. A., Shukor, M. Y., & Yusof, M. T. (2022). Statistical optimisation of used-cooking-oil degradation by Burkholderia vietnamiensis AQ5-12 and Burkholderia sp. AQ5-13. Processes, 10(11), 2178. https://doi.org/10.3390/pr10112178
[13] Höhne, T., & Mamedov, T. (2020). CFD simulation of aeration and mixing processes in a full-scale oxidation ditch. Energies, 13(7), 1633. https://doi.org/10.3390/en13071633
[14] Ismail, A. R., & Baek, K.-H. (2020). Lipase immobilization with support materials, preparation techniques, and applications. International Journal of Biological Macromolecules, 163, 1624–1639. https://doi.org/10.1016/j.ijbiomac.2020.09.021
[15] Guimarães, J. R., Oliveira, K. S. G. C., Gonçalves, M. C. P., Romanelli, J. P., Lopes, L. A., Berenguer-Murcia, Á., Fernandez-Lafuente, R., & Tardioli, P. W. (2023). A review of lipase immobilization on hydrophobic supports. Reaction Chemistry & Engineering, 8, 2689–2702. https://doi.org/10.1039/D3RE00420A
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 JURNAL BIOSENSE

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.











