APLIKASI METODE MAXIMUM LIKELIHOOD ESTIMATION PADA DATA BINOMIAL INTERVAL-TERSENSOR
Abstract
Penelitian ini bertujuan untuk menentukan estimasi data interval-tersensor dengan distribusi binomial. Penelitian ini mengestimasi parameter pada distribusi binomial interval-tersensor menggunakan metode maximum likelihood estimation dan menunjukkan sifat-sifat estimator pada distribusi binomial interval-tersensor. Hasil penelitian menunjukkan bahwa estimator statistik yang cukup dan bersifat simetris.
References
Anderson-Bergman, C. (2017). Regression Models for Interval Censored Data in R. Journal of Statistical Software, 81(12), 1–10. https://doi.org/10.18637/jss.v081.i12
Baltagi, B. H., & Liu, L. (2012). The Hausman-Taylor panel data model with serial correlation. Statistics and Probability Letters, 82(7), 1401–1406. https://doi.org/10.1016/j.spl.2012.03.016
Busemeyer, J. R., & Wang, Z. (2018). Hilbert space multidimensional theory. Psychological Review, 125(4), 572–591. https://doi.org/10.1037/rev0000106
Casella, G., Fienberg, S., & Olkin, I. (2006). Springer Texts in Statistics. In Design (Vol. 102). https://doi.org/10.1016/j.peva.2007.06.006
Fay, M. P., & Shaw, P. A. (2014). Censored Data : The interval R package. Journal of Statistical Software, 36(2), 1–34. https://www.jstatsoft.org/v36/i02/.
Gupta, B. (2016). Introduction to Basic Statistics. Interview Questions in Business Analytics, 23–35. https://doi.org/10.1007/978-1-4842-0599-0_3
Hanneman, R. A., Kposowa, A. J., & Riddle, M. D. (2013). Basic Statistics for Social Research (1st ed.). Wiley and Sons, Inc.: San Fransisco.
James, G. (2013). An Introduction to Statistical Learning with Applications in R (1st ed.). Springer: New York.
Ma, S. (2010). Mixed case interval censored data with a cured subgroup. Statistica Sinica, 20(3), 1165–1181.
Peace, K. E., Sun, J., & Chen, D.-G. (2010). Interval-Censored Time-to-Event Data : Methods and Applications. In Interval-Censored Time-to-Event Data : Methods and Applications (1st ed., p. 39). Springer: New York.
Utami, B. H. S., Irawan, A., Gumanti, M., & Primajati, G. (2021). Hausman and Taylor Estimator Analysis on The Linear Data Panel Model. Varian, 5(1), 81–88.
Walpole, R. E., Myers, R. H., Myers, S. L., & Ye, K. (2012). Probability and Statistics for Engineers and Scientistist (9th ed.). Prentice Hall Pearson: New York.
Zhou, J., Zhang, J., & Lu, W. (2018). Computationally Efficient Estimation for the Generalized Odds Rate Mixture Cure Model With Interval-Censored Data. In Journal of Computational and Graphical Statistics (Vol. 27, Issue 1). https://doi.org/10.1080/10618600.2017.1349665
Zhou, S. K., & Chellappa, R. (2006). From Sample Similarity to Ensemble Similarity: Probabilistic Distance Measures in Reproducing Kernel Hilbert Space. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(6), 917–929. https://doi.org/10.1109/TPAMI.2006.120