PREDIKSI KASUS AKTIF KUMULATIF COVID-19 DI INDONESIA MENGGUNAKAN MODEL REGRESI LINIER BERGANDA
Abstract
Regresi linier berganda digunakan untuk mengidentifikasi hubungan antara variabel respons dengan minimal dua variabel prediktor. Variabel respons merupakan variabel yang dipengaruhi, sedangkan variabel prediktor merupakan variabel yang mempengaruhi. Tujuan penelitian ini adalah melakukan prediksi kasus aktif kumulatif dengan variabel prediktor kasus positif kumulatif, kesembuhan kumulatif, dan korban meninggal kumulatif pada kasus COVID-19 di Indonesia sejak 1 Mei 2021 hingga 26 Agustus 2021 menggunakan metode regresi linier berganda. Hasil penelitian ini menghasilkan prediksi dengan MAPE sebesar 2,11%. Prediksi yang dilakukan memiliki akurasi yang sangat baik karena memiliki nilai galat yang sangat kecil. Berdasarkan hasil tersebut disimpulkan bahwa akan terjadi penurunan kasus aktif kumulatif COVID-19 pada 1-5 September 2021 dengan penurunan terbanyak pada 5 September sebesar 17079 orang.
References
Anjorin, A. A. (2020). The coronavirus disease 2019 (COVID-19) pandemic: A review and an update on cases in Africa. Asian Pacific Journal of Tropical Medicine, 13(5), 199–203. https://doi.org/10.4103/1995-7645.281612
Arfianti, U. I., Novitasari, D. C. R., Widodo, N., Hafiyusholeh, M., & Utami, W. D. (2021). Sunspot Number Prediction Using Gated Recurrent Unit (GRU) Algorithm. IJCCS (Indonesian Journal of Computing and Cybernetics Systems), 15(2), 141–152.
Ayuni, G. N., & Fitrianah, D. (2019). Penerapan Metode Regresi Linear Untuk Prediksi Penjualan Properti pada PT XYZ. Jurnal Telematika, 14(2), 79–86. https://journal.ithb.ac.id/telematika/article/view/321
Gaya, M. S., Abba, S. I., Abdu, A. M., Tukur, A. I., Saleh, M. A., Esmaili, P., & Wahab, N. A. (2020). Estimation of water quality index using artificial intelligence approaches and multi-linear regression. IAES International Journal of Artificial Intelligence, 9(1), 126–134. https://doi.org/10.11591/ijai.v9.i1.pp126-134
Jayaweera, M., Perera, H., Gunawardana, B., & Manatunge, J. (2020). Transmission of COVID-19 virus by droplets and aerosols: A critical review on the unresolved dichotomy. Environmental Research, 109819. https://doi.org/10.1016/j.envres.2020.109819
Jittawiriyanukoon, C. (2018). Evaluation of a multiple regression model for noisy and missing data. International Journal of Electrical and Computer Engineering, 8(4), 2220–2229. https://doi.org/10.11591/ijece.v8i4.pp2220-2229
Kurniadi, A., & Novianto, Y. (2020). Penerapan Metode Regresi Linier untuk Memprediksi Kebiasaan Pelanggan Studi Kasus : PT . Mensa Binasukses. 2(2).
Mohd, T., Jamil, S., Masrom, S., Architecture, F., & Mara, U. T. (2020). Multiple Linear Regression on Building Price Prediction with Green Building Determinant. 29(9), 1137–1148.
Ndii, M. Z., Hadisoemarto, P., Agustian, D., & Supriatna, A. K. (2020). An analysis of Covid-19 transmission in Indonesia and Saudi Arabia. Communication in Biomathematical Sciences, 3(1), 19–27. https://doi.org/10.5614/cbms.2020.3.1.3
Novitasari, D. C. R., Hendradi, R., Caraka, R. E., Rachmawati, Y., Fanani, N. Z., Syarifudin, A., Toharudin, T., & Chen, R. C. (2020). Detection of COVID-19 chest x-ray using support vector machine and convolutional neural network. In Communications in Mathematical Biology and Neuroscience (Vol. 2020). https://doi.org/10.28919/cmbn/4765
Peranginangin, Y., & Alamsyah, A. (2017). Multiple regression to analyse social graph of brand awareness. Telkomnika (Telecommunication Computing Electronics and Control), 15(1), 336–340. https://doi.org/10.12928/TELKOMNIKA.v15i1.3460
Qomariasih, N. (2021). Peramalan Kasus COVID-19 DKI Jakarta dengan Model ARIMA. Jurnal Syntax Transformation, 2(Vol. 2 No. 6 (2021): Jurnal Syntax Transformation). https://doi.org/https://doi.org/10.46799/jurnal%20syntax%20transformation.v2i6.306
Rath, S., Tripathy, A., & Tripathy, A. R. (2020). Prediction of new active cases of coronavirus disease (COVID-19) pandemic using multiple linear regression model. Diabetes and Metabolic Syndrome: Clinical Research and Reviews, 14(5), 1467–1474. https://doi.org/10.1016/j.dsx.2020.07.045
Sri Anggraeni, Aulia Maulidina, Mauseni Wantika Dewi, Salma Rahmadianti, Yulian Putri Chandra Rizky, Zulfa Fathi Arinalhaq, Dian Usdiyana, Asep Bayu Dani Nandiyanto, A. S. M. A.-O. (2020). The Deployment of Drones in Sending Drugs and Patient Blood Samples COVID-19. Indonesian Journal of Science & Technology, 5. https://doi.org/https://doi.org/10.17509/ijost.v5i2.24462
Suganya, R. (2020). COVID-19 Forecasting using Multivariate Linear Regression. 1–17.
Syarifudin, M. A., Novitasari, D. C. R., Marpaung, F., Wahyudi, N., Hapsari, D. P., Supriyati, E., Farida, Y., Amin, F. M., Nugraheni, R. R. D., & Nariswari, R. (2021). Hotspot Prediction Using 1D Convolutional Neural Network. Procedia Computer Science, 179, 845–853.
Utami, T. W., Rohman, A., & Prahutama, A. (2017). Pemodelan Regresi Berganda Dan Geographically Weighted Regression Pada Tingkat Pengangguran Terbuka Di Jawa Tengah. Media Statistika, 9(2), 133. https://doi.org/10.14710/medstat.9.2.133-147
Yufajjiru, L., & Dharma, S. (2020). Indonesian COVID-19 Case Modeling using Gaussian Equation. 15(1).
Zatusiva, D., Candra, D., Novitasari, R., Hamid, A., Zatusiva, D., Candra, D., Widjayanto, A., Rohayani, H., Pramulya, R., & Widjayanto, A. (2021). Long Short-Term Memory Algorithm for Rainfall Prediction Based on El-Nino and IOD Data. Procedia Computer Science, 179(2019), 829–837. https://doi.org/10.1016/j.procs.2021.01.071