ANALISIS DINAMIKA MODEL EPIDEMI SEIQR-SI PENYEBARAN WORM BEBASIS WI-FI PADA SMARTPHONE
Abstract
Artikel ini membahas model matematika SEIQR-SI penyebaran worm berbasis Wi-Fi pada smartphone. Worm berbasis Wi-Fi termasuk perangkat lunak yang mampu mereplikasi dirinya untuk mencoba memecahkan kata sandi setiap router Wi-Fi baru yang ditemuinya tanpa bantuan manusia. Analisis model dilakukan dengan menentukan titik kesetimbangan beserta kestabilannya. Hasil analisis menunjukkan bahwa model SEIQR-SI memiliki dua titik kesetimbangan yaitu titik kesetimbangan bebas worm dan titik kesetimbangan endemik. Titik setimbang bebas worm stabil asimtotik lokal jika , sedangkan titik setimbang endemik stabil asimtotik lokal jika . Pada bagian akhir diberikan simulasi secara numerik yang menunjukkan peningkatan laju karantina oleh Wi-Fi base station pada worm dapat menekan jumlah node smartphone dan Wi-Fi yang terinfeksi worm.
References
Anton, H., & Rorres, C. (2014). Elementary Linear Algebra. New York: Wiley Blckwell.
Cahyono, E. (2013). Pemodelan Matematika (Edisi 1). Yogyakarta: Graha Ilmu.
Elyashar, A., Uziel, S., Paradise, A., & Puzis, R. (2020). The Chameleon Attack: Manipulating Content Display in Online Social Media. Proceedings of The Web Conference, 848–859.
Hu, R., Gao, Q., & Wang, B. (2021). Dynamics and Control of Worm Epidemic Based on Mobile Networks by SEIQR-Type Model with Saturated Incidence Rate. Discrete Dynamics in Nature and Society, 2021, 1–22. https://doi.org/10.1155/2021/6637263
Milliken, J., Selis, V., & Marshall, A. (2013). Detection and analysis of the Chameleon WiFi access point virus. EURASIP Journal on Information Security, 2013(1), 2. https://doi.org/10.1186/1687-417X-2013-2
Mishra, B. K., & Ansari, G. M. (2012). Differential epidemic model of virus and worms in computer network. International Journal of Network Security, 14(3), 149–155.
Mishra, B. K., & Pandey, S. K. (2014). Dynamic model of worm propagation in computer network. Applied Mathematical Modelling, 38(7–8), 2173–2179. https://doi.org/10.1016/j.apm.2013.10.046
Piqueira, J. R. C., & Araujo, V. O. (2009). A modified epidemiological model for computer viruses. Applied Mathematics and Computation, 213(2), 355–360. https://doi.org/10.1016/j.amc.2009.03.023
Ren, J., Yang, X., Yang, L.-X., Xu, Y., & Yang, F. (2012a). A delayed computer virus propagation model and its dynamics. Chaos, Solitons & Fractals, 45(1), 74–79. https://doi.org/10.1016/j.chaos.2011.10.003
Ren, J., Yang, X., Zhu, Q., Yang, L.-X., & Zhang, C. (2012b). A novel computer virus model and its dynamics. Nonlinear Analysis: Real World Applications, 13(1), 376–384. https://doi.org/10.1016/j.nonrwa.2011.07.048
Resmawan, R., & Nurwan, N. (2017). Konstruksi Bilangan Reproduksi Dasar pada Model Epidemik SEIRS-SEI Penyebaran Malaria dengan Vaksinasi dan Pengobatan. Jurnal Matematika Integratif, 13(2), 105–114. https://doi.org/10.24198/jmi.v13.n2.12332.105-114
Scharr, J. (2014). New WiFi Worm can Spread Like an Airbone Disease. Retrieved from https://www.yahoo.com/tech/new-wifi-worm-can-spread-like-an-airbone-disease-78496514830.html
Utoyo, M. I., Nurafifah, E. A., & Miswanto, M. (2018). Analisis Model Matematika Orde Fraksional Penyebaran Worm Berbasis Wi-Fi Pada Smartphone. Limits: Journal of Mathematics and Its Applications, 15(2), 97–112. https://doi.org/10.12962/limits.v15i2.4304
van den Driessche, P., & Watmough, J. (2002). Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Mathematical Biosciences, 180(1–2), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6
Xiao, X., Fu, P., Dou, C., Li, Q., Hu, G., & Xia, S. (2017). Design and analysis of SEIQR worm propagation model in mobile internet. Communications in Nonlinear Science and Numerical Simulation, 43, 341–350. https://doi.org/10.1016/j.cnsns.2016.07.012
Yuan, H., & Chen, G. (2008). Network virus-epidemic model with the point-to-group information propagation. Applied Mathematics and Computation, 206(1), 357–367. https://doi.org/10.1016/j.amc.2008.09.025
Zhu, Q., Yang, X., Yang, L.-X., & Zhang, C. (2012). Optimal control of computer virus under a delayed model. Applied Mathematics and Computation, 218(23), 11613–11619. https://doi.org/10.1016/j.amc.2012.04.092