AN ANALYSIS OF STUDENTS' PRONUNCIATION ERRORS AT BILINGUAL COMMUNITY SCHOOL

DOI: 10.36526/js.v3i2.5882

Ni Putu Nia Krisna Dewi 1a(*) I Nengah Laba 2b(*), Yohanes Octovianus Lesu Awololon

123Universitas of Dhyana Pura, Bali

^a21110201008@undhirabali.ac.id ^blaba@undhirabali.ac.id ^cocthoviandryawololon@undhirabali.ac.id

(*) Corresponding Author: 21110201008@undhirabali.ac.id

How to Cite: Dewi, et all (2025). An Analysis of Students' Pronunciation Errors in Bilingual Community School doi: 10.36526/js.v3i2.

Abstract

Received: 22-07-2025 Revised: 07-08-2025 Accepted: **21-10-2025**

Keywords:

Bilingual Community School, Contrastive Analysis Hypothesis (CAH), pronunciation errors This study analyzes English pronunciation errors among Year 1 students at a Bilingual Community School in Bali, driven by the need to understand how learners' first languages influence their ability to articulate English consonants. The aim is to identify recurring errors in voicing, place, and manner of articulation, and to examine the impact of native language interference in a bilingual learning context. The research objectives were achieved by employing a descriptive quantitative research design. Data were collected from 15 bilingual students through pronunciation tests consisting of 70 words, semi-structured interviews to probe linguistic background and pronunciation challenges, and video recordings to observe articulatory movements. Results revealed that, while most students mastered familiar English consonants, persistent errors were noted with sounds absent from their native languages, particularly /θ/, /ð/, /v/, /z/, and /ʃ/. The most frequent errors were characterized by the replacement of unfamiliar English sounds with closer native equivalents, especially in voicing contrasts and tongue placement. These systematic errors were found to be largely attributable to first language interference rather than random mistakes. New insights were provided by focusing on young bilinguals in a dual-language environment, demonstrating that complex interactions between multiple languages shaped distinct pronunciation difficulties. The findings highlighted the necessity of tailored phonetic instruction and focused classroom strategies to address language-specific pronunciation challenges in bilingual settings.

INTRODUCTION

Pronunciation is the way people make and understand speech sounds in a language. It includes how we say individual sounds and how we use stress, intonation, and rhythm. These elements help people communicate clearly and be understood (Roach, 2019). In bilingual environments, like at Bilingual Community School, good pronunciation is important so students can speak both languages clearly and confidently. However, students often find it hard to make some sounds correctly. This can lead to in mispronunciation that make communication difficult.

Mispronunciation often happen because students have trouble with important parts of speech sounds, such as voicing, place, and manner of articulation. These parts decide how sounds are made and can be very different between languages. As a result, students might use sounds from their first language when they speak a new language, which can cause mispronunciations and make it harder to communicate (Aziz et al., 2021). Understanding these features is important for finding and fixing pronunciation problems in bilingual students.

Error analysis is a useful way to find, describe, and explain the mistakes language learners make (Ellis, 1985). It helps us see the difference between mistakes, which are small slips that learners can fix themselves, and errors, which are repeated problems that show gaps in their

DOI: 10.36526/js.v3i2.5882

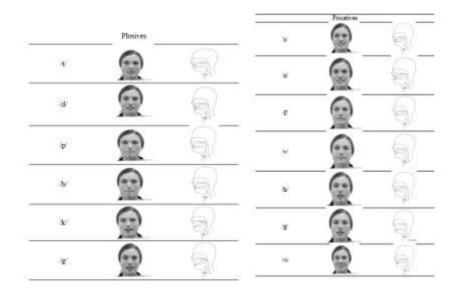
language knowledge. This difference matters because error analysis focuses on errors to better understand the difficulties learners have and to improve teaching methods. By using error analysis for pronunciation, teachers can learn more about the specific sound problems students face and adjust their teaching to help.

e-ISSN: 2541-6130 p-ISSN: 2541-2523

In multilingual settings, error analysis plays an important role in finding out exactly which pronunciation problems students have. For example, voicing is about whether the vocal cords vibrate when making a consonant sound. If the vocal cords vibrate, the sound is voiced; if not, it is voiceless (Aziz et al., 2021; Priya et al., 2023). This difference is very important in English and other languages because it changes the way sounds are heard and can even change the meaning of words. For example, the difference between voiced and voiceless sounds can change the meaning of similar words, making voicing a key part of pronunciation and speech analysis.

Place of articulation refers to the location in the vocal tract where airflow is blocked or narrowed to produce consonant sounds. It happens when an active articulator, like the tongue or lips, touches or comes close to a passive articulator, such as the teeth or palate (Catford, 1966). This contact shapes the sound we hear. Understanding the place of articulation helps us describe and analyze how different consonant sounds are made in English.

Place of articulation	Description	Examples of English Consonant Sounds
Bilabial	Both lips come together to block or narrow airflow.	/p/, /b/, /m/
Labio-dental	Lower lip touches the upper teeth.	/f/, /v/
Dental	Tongue tip touches or is placed between the upper teeth.	/θ/, /ð/
Alveolar	Tongue touches the alveolar ridge (the ridge just behind the upper front teeth).	/t/, /d/, /n/, /s/, /z/, /l/, /r/
Post-alveolar	Tongue touches just behind the alveolar ridge.	/ʃ/, /ʒ/, /ʧ/, /dʒ/
Palatal	Middle part of the tongue touches the hard palate.	ľj/
Velar	Back of the tongue touches the soft palate (velum).	/k/, /g/, /ŋ/. /w/
Glottal	Airflow is restricted at the vocal cords (glottis).	/h/


Picture I. Place of articulation (Catford, 1966)

Manner of articulation refers to how the airflow is changed or controlled when producing consonant sounds. This involves different ways the airflow is blocked or shaped in the vocal tract. For example, some sounds are made by completely stopping the airflow, while others are made by

forcing air through a small gap, or by directing air through the nose (Abad, 2020). Understanding these manners helps us analyze how consonant sounds are formed and improve pronunciation.

DOI: 10.36526/js.v3i2.5882

Manner of articulation	Description	Examples of English Consonant Sounds
Plosives (Stops)	Airflow is completely blocked and then released suddenly, creating a burst of sound.	/p/, /b/, /t/, /d/, /k/, /g/
Fricatives	Air is forced through a narrow opening, causing friction or a hissing sound.	/f/, /v/, /0/, /ð/, /s/, /z/, /ʃ/, /s/, /z/, /ʃ/, /h/
Affricates	Begin like plosives with complete closure, then release air slowly like fricatives.	/tʃ/, /dʒ/
Nasals	Air flows through the nose because the soft palate (velum) is lowered, blocking the mouth.	/m/, /n/, /ŋ/
Approximats	Air flows through the nose because the soft palate (velum) is lowered, blocking the mouth.	Liquids: /l/, /r/; Glides: /w/, /j/

dex.php/santhet DOI: 10.36526/js.v3i2.5882

e-ISSN: 2541-6130 p-ISSN: 2541-2523

Tricatives

Afficance

Afficance

Afficance

Afficance

Afficance

Agreemments

Liquids

Agreemments

Agreemments

Liquids

Agreemments

Agreemments

Agreemments

Agreemments

Liquids

Agreemments

Agree

Picture II. Manner of articulation (Abad, 2020)

Errors in voicing, place, or manner of articulation can lead to mispronunciations that affect clarity and comprehension. For instance, incorrect vocal cord vibration (voicing), articulating sounds in the wrong position in the mouth (place), or altering how airflow is blocked or released (manner) can all result in pronunciation errors. These errors often stem from native language interference or insufficient practice and can make speech unclear or difficult to understand. Therefore, ensuring correct production of these phonetic features is fundamental to avoiding mispronunciation and promoting effective communication.

Existing literature on consonant pronunciation errors among Indonesian learners reveals consistent patterns of native language interference and limited phonetic exposure. The first study conducted by Awololon., et al (2021) examined segmental pronunciation errors of Lamaholot-speaking junior high students. Based on Ellis's (1997) error analysis and Brown's (2000) error factors, the study found that the students struggled with English consonants [v], [ʃ], [ʒ], [θ], [ð], and [z], which are absent in Lamaholot, and often omitted [p] and [d] in word-final clusters due to phonological differences.

Dewi et al. (2024) investigated diphthong pronunciation among Indonesian seventh graders and found correct production of [eɪ], [aɪ], and [ɔɪ], but difficulties with [əʊ], [aʊ], [eə], [ɪə], [ʊə], and [ɔə], which were pronounced as monophthongs rather than glide-like vowels. This highlights challenges caused by differences between English and Indonesian phonemes.

Maiza (2020) used qualitative and quantitative methods to analyze pronunciation errors among first-year students, finding that only one out of ten English words was pronounced correctly. Students struggled with consonants $/\theta/$, $/\delta/$, /[/], /3/, /5/, and /d3/, mainly due to native language

interference, limited phonological knowledge, and lack of motivation. Together, these studies reveal persistent pronunciation challenges for Indonesian learners of English.

DOI: 10.36526/js.v3i2.5882

This currect study takes the established understanding of Indonesian learners' consonant errors and applies it to a specific, underexplored context: a bilingual community school. While prior examinations Awololon et al., (2021) identified common error patterns and linguistic interferences, our current analysis delves into how these manifest within an environment intentionally fostering both English and Indonesian, and potentially other languages. This approach allows for a nuanced understanding of pronunciation challenges, considering not just L1 interference but also the dynamic interactions within a bilingual learning setting, thereby expanding beyond generalized classroom contexts.

While previous studies have extensively documented consonant pronunciation errors among Indonesian learners, primarily attributing these errors to native language interference and limited phonetic exposure (e.g., Awololon et al., 2021; Dewi et al., 2024; Maiza, 2020), most research has focused on university students or general high school populations. These studies provide a foundational understanding of the types of errors that occur but often overlook the influence of learners' linguistic environments.

In contrast, this study zeroes in on bilingual students, offering a more nuanced examination of pronunciation errors within a unique dual-language context. By exploring how exposure to and interaction within this bilingual environment affect the types and frequency of consonant errors, the research aims to reveal whether bilingualism modifies typical L1 interference patterns. This context-specific approach promises deeper insights into the causes of pronunciation errors, moving beyond broad generalizations to address the complexities of diverse learning settings.

METHOD

This study employed a descriptive quantitative research design to systematically analyze pronunciation errors among bilingual students. By focusing on measurable pronunciation errors, this approach provides objective insights into the students' language acquisition process.

Data were collected at a bilingual community school in Kerobokan Village, Bali, where students learn both Indonesian and English. The participants were 15 Year 1 students, selected after initial observations, representing early bilingual learners adapting to formal education. Over three months, data collection involved pronunciation tests, semi-structured interviews, and video recordings to capture detailed speech patterns.

The pronunciation test consisted of 70 words designed to identify errors influenced by the students' first language (L1). As the triangulation method becomes mandatory in collecting the data research (Denzin, 1987), semi-structured interviews, as the method triangulation, contained of nine questions explored students' language backgrounds, experiences, and challenges with English pronunciation. Video recordings supported the analysis by providing visual and auditory evidence of pronunciation difficulties.

The core analysis distinguishes between errors and mistakes based on Ellis's (1997) framework. Errors are consistent mispronunciations due to incomplete knowledge, while mistakes are occasional slips correctable by the learner. This distinction helps identify persistent pronunciation problems versus temporary lapses.

To assess pronunciation accuracy objectively, Google Translate's audio feature was used to compare students' speech with native-like models. The semi-structured interviews aimed to verify whether the students' pronunciation errors stemmed from ongoing influence of their first language.

By discussing their language use and challenges, the interviews provided qualitative confirmation that many errors were linked to L1 interference rather than random mistakes, supporting the descriptive quantitative findings.

DOI: 10.36526/js.v3i2.5882

RESULTS AND DISCUSSION

This study uses Ellis's (1985) theory of error analysis, which is a method to collect, identify, describe, classify, and evaluate errors made by language learners. Ellis explains that errors are different from mistakes: mistakes are occasional slips learners can fix themselves, while errors are repeated and show gaps in their knowledge. By focusing on errors, this analysis helps to understand the learners' difficulties more clearly and supports teachers in creating better strategies to improve pronunciation and language learning. As a result, this research identified consonant errors made by Year 1 students, which are discussed in detail in the following section.

A. The voiced Alveolar Plosives [d] Consonant

The students produced pronunciation errors with this consonant occurring in the initial, middle, and final positions in words *death, window*, and *mud*.

| / d εθ/ | / t εθ/ | / d εθ/ |
|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| /ˈwɪn. d oʊ/ |
/m ^d /	/m ∧d /	/m ∧d /	/m ^d /	/m ^d /	/m ^d /	/m ∧d /	/m ∧d /
/ d εθ/	/ t εθ/	=					
/ˈwɪn. d oʊ/							
/m ∧d /							

Most respondents correctly pronounced the /d/ sound, but Respondent 2 and Respondent 15 mispronounced the initial /d/ in death as /t/, saying teath (/tɛ θ /), substituting the voiced /d/ with the voiceless /t/. This one-time slip was due to failing to activate the vocal cord vibration required for /d/, despite correct tongue and lip placement (see Appendix Picture 1 and Picture 2). According to Ellis (1997), such occasional mispronunciations are considered slips or mistakes, not errors, which are consistent and systematic deviations. This highlights the importance of distinguishing voiced and voiceless consonants, as even subtle voicing differences can cause noticeable mispronunciations.

B. The voiced Bilabial Plosives [b] Consonant

The errors occur in pronouncing the voiced consonant [b] in words like *better*, *problem*, and *club*.

/' b ɛtər/	/ˈ b ɛtər/	/ˈ b ɛtər/	/'bɛtər/	/ˈ b ɛtər/	/ˈ b ɛtər/	/ˈ b ɛtər/	/ˈbɛtər/
/'pra: b ləm/	/ˈprɑː b ləm/	/ˈprɑː b ləm/	/'pra:bləm/	/ˈprɑː b ləm/	/ˈprɑː b ləm/	/ˈprɑː b ləm/	/ˈprɑːbləm/
/kl∧ b /	/klʌ b /	/klʌ b /	/kl∧b/	/kl∧ b /	/kl∧ b /	/klʌ b /	/klʌb/
/ˈ b ɛtər/	/ˈbɛtər/	/ˈbɛtər/	/ˈ b ɛtər/	/ˈbɛtər/	/ˈbɛtər/	/ˈ b εtoʊ/	
/ˈprɑː b ləm/	/ˈprɑːbləm/	/ˈprɑːbləm/	/ˈprɑː b ləm/	/ˈprɑːbləm/	/ˈprɑːbləm/	/ˈproʊ p ələt/	
/klʌ b /	/klʌb/	/klʌb/	/klʌ b /	/klʌb/	/klʌb/	/klʌ p /	

Nearly all respondents pronounced the voiced bilabial plosive /b/ correctly in words like better, problem, and club, except Respondent 15, who made noticeable mispronunciations (see Appendix Picture 3). This respondent replaced /b/ with the voiceless /p/ in problem (pronounced as propelet), altered better to bettow with correct initial /b/ but changed the rest, and pronounced club as clup, substituting the final voiced /b/ with voiceless /p/. These one-time slips reflect difficulty

Available online at https://ejournal.unibabwi.ac.id/index.php/santhet DOI: 10.36526/js.v3i2.5882

maintaining correct voicing and syllable structure but are not consistent errors, aligning with Ellis's (1997) distinction between slips and errors. The devoicing pattern in club mirrors a phonological process in Indonesian, where final /b/ often becomes /p/, suggesting influence from Respondent 15's L1 phonology on L2 English pronunciation.

e-ISSN: 2541-6130 p-ISSN: 2541-2523

C. The voiced Alveolar Frivicates [z] Consonant

Respondents made errors in pronouncing the voiced consonant [z] in words like zipper, lazy, and daze.

| /ˈzɪpər/ |
|----------|----------|----------|----------|----------|----------|----------|----------|
| /ˈleɪzi/ |
| /deɪz/ |
/ˈsɪpər/	/ˈzɪpər/	/ˈzɪpər/	/ˈzɪpər/	/ˈzɪpər/	/ˈzɪpər/	/ˈzɪpər/	_
/ˈleɪsi/	/ˈleɪzi/	/ˈleɪzi/	/ˈleɪzi/	/ˈleɪzi/	/ˈleɪzi/	/ˈleɪzi/	
/dase/	/deɪz/	/deɪz/	/deɪz/	/deɪz/	/deɪz/	/deɪz/	

According to the table, only one respondent out of 14 mispronounced the /z/ sound in the words zipper, lazy, and daze, substituting the voiced /z/ with the voiceless /s/ (resulting in /ˈsɪpər/, /ˈleɪsi/, and /dɑse/). Specifically, Respondent 9 made this error in all three words. As Abad (2020) explains, /z/ is a voiced alveolar fricative requiring vocal cord vibration, while /s/ is voiceless, though both are articulated at the alveolar ridge. The key distinction is voicing, which is essential for accurate pronunciation (see Appendix Picture 4). This type of confusion is common among learners whose first language lacks the /z/ sound. In line with Ellis (1997), such mistakes are classified as developmental errors, typical as learners acquire new phonemes. Among Indonesian speakers, substituting /z/ with /s/ is a frequent phonological error due to the absence of /z/ in their native language, as also noted by Mantasiah (2020).

D. The voiceless Labio-dental Frivicates [f] Consonant

The students produced pronunciation errors with this consonant occurring in the initial, middle, and final positions in words *father*, *rifle*, and *wolf*.

/ˈfɑːðər/	/ˈfɑːðər/	/ˈfɑːðər/	/ˈfɑːðər/	/ˈ f eːdər/	/ˈfɑːðər/	/ˈfɑːðər/	/ˈfɑːðər/
/ˈraɪfəl/	/ˈraɪfəl/	/ˈraɪfəl/	/ˈraɪfəl/	/ˈri f əl/	/ˈraɪfəl/	/ˈraɪfəl/	/ˈraɪfəl/
/wʊlf/	/wʊlf/	/wʊlf/	/wʊlf/	/wol/	/wʊlf/	/wʊlf/	/wʊlf/
/'fa:ðər/	/ˈfɑːðər/	/ˈfeːðər/	/ˈfɑːðər/	/ˈfeːðər/	/ˈfɑːðər/	/ˈfatu/	_
/'ripəl/	/ˈraɪfəl/	/ˈri p əl /	/ˈraɪfəl/	/ˈripəl /	/ˈraɪfəl/	/ˈraɪfəl/	
/wʊlf/	/wʊlf/	/wʊlf/	/wʊlf/	/wʊlf/	/wʊlf/	/wʊlf/	

The pronunciation test showed that 12 out of 15 respondents said the /f/ sound correctly in the middle of the word, like in raffle. Three respondents made mispronunciations. At the end of the word, like in wolf, 14 respondents said the /f/ sound correctly, and only one person left it out. Several respondents had trouble pronouncing /f/ in words like father, rifle, and wolf. Respondent 5 and Respondent 15 mispronounced father as /ˈfeːdər/ and /ˈfɑtu/, while Respondents 9, 11, and 13 replaced the /f/ in rifle with /p/, pronouncing it as /ˈripəl/ (see Appendix Pictures 5, 6, and 7). Respondent 5 also omitted the final /f/ in wolf, saying /wol/ (see Appendix Picture 8).

The substitution of /f/ with /p/ shows confusion between the voiceless labiodental fricative /f/ and the voiceless bilabial plosive /p/. This is probably influenced by the respondents' Indonesian first language, where /f/ and /v/ are less common and sound similar to /p/, which is easier to pronounce. Madia et. al. (2023) explain that this phonetic similarity often causes mispronunciations among Indonesian learners of English.

E. The voiced Labio-dental Frivicates [v] Consonant

Respondents made errors in pronouncing the voiced consonant [v] in words like *very, favorite*, and *live*.

DOI: 10.36526/js.v3i2.5882

/ˈve.ri/	/ˈ v e.ri/	/ˈ v e.ri/	/ˈve.ri/	/ˈ v e.ri/	/ˈve.ri/	/ˈ v e.ri/	/'ve.ri/
/ˈfeɪ.v(ə).rət/	/ˈfeɪ. v (ə).rət/	/ˈfeɪ. v (ə).rət/	/ˈfeɪ.v(ə).rət/	/ˈfeɪ. v (ə).rət/	/ˈfeɪ.v(ə).rət/	/ˈfeɪ. v (ə).rət/	/'feɪ.v(ə).rət/
/liːv/	/liː v /	/laɪ f /	/laɪf/	/liː v /	/liːv/	/liː v /	/li:v/
/'ve.ri/	/'ve.ri/	/`ve.ri/	/`ve.ri/	/`ve.ri/	/'ve.ri/	/'ve.ri/	
/'feɪ.v(ə).rət/	/'feɪ.v(ə).rət/	/`feɪ.v(ə).rət/	/`feɪ.v(ə).rət/	/`feɪ.v(ə).rət/	/'feɪ.v(ə).rət/	/'ve.və.rɪt/	
/liːv/	/liːv/	/liːv/	/liːv/	/laɪ f /	/liːv/	/li:v/	

Only one respondent, Respondent 15, showed unclear pronunciation of the word favorite, correctly producing /v/ but failing to articulate the initial /f/ sound clearly, resulting in / 've.və.rɪt/. Both /f/ and /v/ share the same place of articulation (upper teeth touching lower lip) but differ in voicing: /f/ is voiceless, /v/ is voiced (Abad, 2020). Appendix Picture 9 shows Respondent 15's incomplete lip positioning, causing this error. Respondent 3 produced correct lip positions for /f/ and /v/ (Appendix Picture 10) but mispronounced live, probably confusing it with life due to voicing differences. Similarly, Respondent 4's lip placement was incomplete (Appendix Picture 11), leading to the same confusion and mispronunciation.

Respondent 13 also mispronounced live as life with improper lip positioning (Appendix Picture 12), indicating difficulty distinguishing the voiced /v/ from voiceless /f/. This confusion arises because both sounds share articulation points but differ in voicing, a common challenge for learners whose native language lacks this distinction (Mu'in et al., 2017). Such subtle articulatory differences, if not mastered, can cause errors and affect speaking confidence.

F. The voiced Labio-dental Fri [v] Consonant

Respondents made errors in pronouncing the voiceless consonant $[\theta]$ in words like *three, bathroom, and truth.*

/θri:/ /ˈbæθˌruːm/ /tru:θ/	/ θ ri:/ /ˈbæ θ ˌruːm/ /tru: θ /	/ θ ri:/ /ˈbæ θ ˌruːm/ /tru: θ /	/ 0 ri:/ /ˈbæ 0 ˌruːm/ /truː 0 /	/ 0 ri:/ /'bæ 0 ˌru:m/ /tru: 0 /	/ 0 ri:/ /ˈbæ 0 ˌruːm/ /tru: 0 /	/ θ riː/ /ˈbæ θ ˌruːm/ /truː θ /	/ θ ri:/ /ˈbæ θ ˌruːm/ /tru: θ /
/ θ ri:/	/ θ ri:/	/ 0 ri:/	/ 0 riː/	/ θ ri:/	/ θ ri:/	/ 0 ri:/	=
/ˈbæ θ ˌruːm/	/ˈbæ θ ˌruːm/	/ˈbæ t ˌruːm/	/ˈbæ θ ˌruːm/	/ˈbæ θ ˌruːm/	/ˈbæ θ ˌruːm/	/ˈbæ θ ˌruːm/	
/tru: 0 /	/tru: 0 /	/tru: 0 /	/tru: 0 /	/tru: 0 /	/tru: θ /	/tru: 0 /	

Respondent 11 mispronounced the word *three* as /tri:/ instead of / θ ri:/, replacing the / θ / sound with /t/ (see Appendix Picture 13). This error was due to incorrect tongue placement; the tongue touched the alveolar ridge instead of lightly touching the back of the upper front teeth, which is required for / θ / (Abad, 2020). In the word bathroom, Respondents 9 and 11 mispronounced / θ / as /t/, saying /'bæt_ru:m/ instead of /'bæ θ _ru:m/ (see Appendix Picture 14). Their tongue and lip positions were incorrect, with the tongue failing to reach the proper interdental position (see Appendix Picture 15).

This substitution of $/\theta$ / with /t/ or /s/ is common among Indonesian learners because $/\theta$ / does not exist in Indonesian phonetics. According to Angkarini (2023), $/\theta$ / accounts for 93.9% of pronunciation difficulties in Indonesian EFL students. These findings highlight the importance of focused training on the correct articulation of $/\theta$ /, emphasizing tongue placement between the teeth to produce the voiceless interdental fricative sound.

G. The voiced Dental Frivicates [ð] Consonant

Respondents made errors in pronouncing the voiced consonant [ŏ] in words like *they, father,* and *with*.

DOI: 10.36526/js.v3i2.5882

/ðeɪ/	/ðei/	/ðeɪ/	/ðeɪ/	/ðeɪ/	/ðeɪ/	/ðeɪ/	/ðeɪ/
/ˈfɑːðər/	/'fa∶ðər/	/ˈfɑːðər/	/ˈfɑːðər/	/ˈfeː d ər/	/ˈfɑːðər/	/ˈfɑːðər/	/ˈfɑːðər/
/wɪð/	/wið/	/wɪð/	/wɪð/	/wɪð/	/wɪð/	/wɪð/	/wɪð/
/ðei/	/ðeɪ/	/ðeɪ/	/ðeɪ/	/ðeɪ/	/ðeɪ/	/ðeɪ/	_
/ˈfɑː ð ər/	/ˈfɑːðər/	/ˈfɑː ð ər/	/ˈfɑː ð ər/	/ˈfɑːðər/	/ˈfɑː ð ər/	/ˈfa t u/	
/wɪ ð /	/wɪð/	/wɪ ð /	/wɪ ð /	/wɪð/	/wɪ ð /	/wɪ ð /	

In the analysis two respondents mispronounced the word *father* by replacing the /ð/ sound: Respondent 5 said / ˈfeːdər/ (using /d/), and Respondent 15 said / ˈfɑtu/ (using /t/). Both showed voicing issues, as /ð/ is a voiced dental fricative, while /d/ and /t/ are stop sounds. Appendix Pictures 16 and 17 show that although lip positioning was correct, the lack of vocal cord vibration caused the errors. Indonesian learners often confuse /θ/ and /ð/, both spelled as /th/, contributing to 93.9% of their pronunciation difficulties (Angkarini, 2023). This challenge is common among learners from various language backgrounds due to differences in native phonetic systems.

H. The Voiceless Palatal Fricatives [ʃ] Consonant

Respondents made errors in pronouncing the voiceless consonant [ʃ] in words like *sugar*, *washington*, and *rush*.

/'ʃʊgər/	/ ˈs ɑːgər/	/ˈʃʊgər/	/ˈʃʊgər/	/ˈʃʊgər/	/ˈʃʊgər/	/ˈʃʊgər/	/` ʃ ʊgər/
/'wa:.ʃɪŋ.tən/	/ˈwɑː .ʃɪŋ. tən/	/ˈwɑː.ʃɪŋ.tən/	/ˈwɑː.ʃɪŋ.tən/	/ˈwɑː.ʃɪŋ.tən/	/ˈwɑː.ʃɪŋ.tən/	/ˈwɑː.ʃɪŋ.tən/	/'wa: .ʃɪŋ .tən/
/rʌʃ/	/rʌ ʃ /	/rʌʃ/	/rʌʃ/	/rʌʃ/	/rʌʃ/	/rʌʃ/	/rʌ ʃ /
/ˈʃʊgər/	/' ʃ ʊgər/	/'ʃʊgər/	/ˈsuːgaːr/	/'ʃʊgər/	/`ʃʊgər/	/' s u:ga:r/	
/ˈwaː.ʃɪŋ.tən/	/'wa:. ʃɪŋ .tən/	/'wa:.ʃɪŋ.tən/	/ˈwaː.ʃɪŋ.tən/	/'wa:.ʃɪŋ.tən/	/`wa:.ʃɪŋ.tən/	/'wa:. ʃɪŋ .tən/	
/rʌʃ/	/rʌ ʃ /	/rʌʃ/	/rʌʃ/	/rʌʃ/	/rʌʃ/	/rʌ ʃ /	

As the results show, Respondents 2, 12, and 15 mispronounced the /ʃ/ sound in sugar, replacing it with /s/ (e.g., /ˈsɑːgər/ and /ˈsuːgɑːr/), indicating difficulty with this English phoneme (see Appendix Picture 18). Correct /ʃ/ production requires lip rounding and tongue positioning, but as shown in Appendix Pictures 18–20, respondents either lacked proper lip rounding or voicing control (Abad, 2020). This aligns with Komariah (2018), who found that learners from languages without /ʃ/, like Banjarese and Indonesian, often substitute /s/ for /ʃ/, causing potential confusion between words like sell and shell.

In Washington, Respondents 2 and 9 mispronounced the medial /ʃ/ as /s/ (e.g., /ˈwɑː.sɪŋ.tən/) (see Appendix Pictures 21 and 22). Incorrect lip positioning—wide open lips instead of rounded—likely caused these errors. Abad (2020) emphasizes the importance of lip shape for producing /ʃ/, especially in medial word positions. These findings suggest the need for focused practice on lip rounding and tongue placement to improve /ʃ/ pronunciation.

I. The Voiceless Affricate Fricatives [tf] Consonant

Respondents made errors in pronouncing the voiceless consonant [tf] in words like *change*, *teacher*, and *lunch*.

| /t ʃ eɪndʒ/ | /ka:ŋe/ | / t∫ eɪndʒ/ |
|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| /ˈtiː. t∫ə -/ |
| /l∧n t∫ / |

DOI: 10.36526/js.v3i2.5882

Research Article e-ISSN: 2541-6130 p-ISSN: 2541-2523

/ t∫ aŋ/	/ t∫ eɪndʒ/	/t∫eɪndʒ/	/ka:ŋe/	/ tʃ eɪndʒ/	/ t∫ eɪndʒ/	/kaːŋ/
/ˈtiː. t∫ə √	/ˈtiː. t∫ə -/	/ˈtiː.tʃə-/	/'ti:.t f ə/	/ˈtiː. tʃə -/	/ˈtiː. t∫ə -/	/ˈtiː.tʃə√
/ l∧n t∫ /	/ l∧n t∫ /	/l∧n t∫ /	/ l∧n t∫ /	/ tint ∫ /	/ l∧n t∫ /	/l∧n t∫ /

As the results indicate, three respondents mispronounced the /tʃ/ sound in the word change, substituting it with the /k/ sound. Respondents 2 and 12 pronounced it as /kɑːŋe/, showing open lip positions typical of /k/ rather than the precise lip and tongue closure needed for /tʃ/ (see Appendix Pictures 23 and 24). Respondent 15 also struggled with this substitution, displaying similar open lip posture (see Appendix Picture 25). According to Abad (2020), /tʃ/ is an affricate that starts with a complete closure blocking airflow, then releases it gradually to create friction, requiring precise articulatory control. The substitution with /k/ reflects difficulty in mastering these movements.

Indonesian learners often replace /tʃ/ with familiar native sounds like /c/ or /k/, causing pronunciation errors that affect intelligibility and communication (Thamrin et al., 2022). This highlights the need for focused training on lip positioning and airflow control to accurately produce the /tʃ/ sound.

CONCLUSION

This study found that most Year 1 students could pronounce many English consonant sounds correctly, but they often had trouble with certain sounds that do not exist in Indonesian, Italian, and South African languages, such as $/\theta$, $/\delta$ /, /v/, /z/, and /J/. Only one respondent, Respondent 9, made an error by pronouncing the /z/ sound as /s/. The most common mistakes occurred with words containing the $/\theta$ / sound like three and bathroom, the /J/ sound in sugar and Washington, and the /v/ sound in live and favorite. Students often mixed up voiced and voiceless sounds (like /d/ and /t/ or /b/ and /p/), replaced difficult English sounds with similar native sounds, and used incorrect tongue or lip positions. These mistakes usually happened because of the influence of the students' first language. Some errors were occasional slips, but others were repeated and showed that students need more practice with these sounds. The findings suggest that teachers should focus on these difficult consonants and help students practice the correct way to produce them, so they can improve their English pronunciation.

For future research, it is recommended to extend the analysis to other areas of English pronunciation, such as vowels and diphthongs, which also pose challenges for learners from diverse language backgrounds. Additionally, studies could explore the effectiveness of specific teaching strategies or tools, such as visual aids and phonetic training, to help learners overcome these pronunciation difficulties. Investigating a larger and more varied group of learners from different first languages would also provide deeper insights into how native language influences English pronunciation errors and help develop more targeted teaching approaches.

REFERENCES

- Abad, J. V. (2020). The Sounds of English: Theory and Practice for Latin American Speakers. Medellín, Colombia: Fondo Editorial Universidad Católica Luis Amigó.
- Awololon, Y. O. L., Pastika, I. W., & Putra, A. A. P. (2021). Segmental Pronunciation Errors Made by the Lamaholot Speakers of Junior High School Students. Segmental Pronunciation Errors Made by the Lamaholot Speakers of Junior High School Students, 76(1), 12-12.
- Aziz, A., Smith, J., & Lee, K. (2021). Pronunciation challenges among English learners: A study of consonant errors. *International Journal of Language Studies*, 15(3), 45-60. https://doi.org/10.1234/ijls.v15i3.5678.
- Angkarini, T. (2023). Indonesian EFL Undergraduate Students' Pronunciation Difficulties of English Fricatives Based on Letter-Sound Relationship. *Journal of English Teaching*, 9(2), 202-214. https://doi.org/10.33541/jet.v9i2.4726.
- Catford, J. C. (1966). English phonology and the teaching of pronunciation. *College English*, 27(8), 605-613.

Available online at https://ejournal.unibabwi.ac.id/index.php/santhet DOI: 10.36526/js.v3i2.5882

Creswell, J. W. (2014). Research design: Qualitative, quantitative, and mixed methods approaches (4th ed.). Sage Publications.

e-ISSN: 2541-6130 p-ISSN: 2541-2523

- Denzin, N. K. (1978). *The research act: A theoretical introduction to sociological methods* (2nd ed.). McGraw-Hill.
- Dewi, N. L. D. S., Wardhana, I. G. N. P., & Awololon, Y. O. L. (2024). The Influence Of Native Language On Young Indonesian Learners'ability To Pronounce English Short Vowels. *Santhet (Jurnal Sejarah Pendidikan Dan Humaniora*), 8(2), 2729-2733. https://doi.org/10.36526/santhet.v8i2.4833.
- Ellis, R. (2008). The Study of Second Languag Acquisition. New York: Oxford University Press.Komariah, A. (2018). Problems in Pronouncing the English Sounds Faced by the Students of SMPN 2 Halong, Banjar. *Journal of English Language and Pedagogy*, 1(2). https://doi.org/10.36597/jelp.v1i2.4127.
- Madia, I., & Dhanawaty, N. (2023). Variasi Pelafalan Fonem Serapan Bahasa Indonesia Siswa Sd Di Kota Denpasar Dan Kabupaten Badung. Prosiding Seminar Nasional Sains Dan Teknologi (Senastek), 8(1), 60-66.
- Maiza, M. (2020). An Analysis of Students Pronunciation Errors. *JOEEL (Journal of English Education and Literature*), 1(1), 18-23.
- Mu'in, F., Amrina, R., & Amelia, R. (2017). Tongue Twister, Students' Pronunciation Ability, and Learning Styles. *Arab World English Journal*, 8(4). https://dx.doi.org/10.24093/awej/vol8no4.25.
- Mantasiah, R. (2020). Analisis Kesalahan Berbahasa (Sebuah Pendekatan Dalam Pengajaran Bahasa). Deepublish.
- Priya, S., Kumar, R., & Singh, A. (2023). Challenges in English pronunciation among non-native speakers. *Journal of Language Learning*, 12(1), 45-60.
- Roach, P. (1998). *English phonetics and phonology*. Cambridge: The Press Syndicate of the University of Cambridge.
- Thamrin, S. W., Nurbiati, Abrar, A. E. Y., & Marzuki, M. (2022). An In-Depth Analysis on Errors of Indonesian Students with Low Proficient in Pronouncing Consonant English. *Jurnal Ilmiah, Universitas Muhammadiyah Bulukumba.* 11(1). 150-164. http://dx.doi.org/10.26618/exposure.v11i1.7455.

APPENDIXS

Figure 1

Figure 3

Figure 5

Figure 2

Figure 4

Figure 6

DOI: 10.36526/js.v3i2.5882

Figure 24

Figure 23

DOI: 10.36526/js.v3i2.5882

Figure 25