Prototype Sistem Kendali Keamanan Perlintasan Kereta Otomatis Menggunakan Gps Neo 6m

¹Joni Aditya, ²Farrady Alif, ³yanu shalahudin

¹ Teknik Elektro, Universitas Islam Kadiri, Kediri

² Teknik Elektro, Universitas Islam Kadiri, Kediri

¹Jonsadty@gmail.com, ²farradyalif@uniska kediri.ac.id

Abstract - Train transportation is the transportation that is often used by the community. Trains are in great demand by residents because of their safety. The method used in this research is experimental testing of gps parameters and using lora. The implementation process in this project tests parameters to detect passing trains. From the results of this study, several trials were carried out on the train. That is the trial of tracking from Tulungagung-Kediri and Kediri-Tulungagung. The goal is to determine the coordinates of the checkpoint points. Then test the transmitter and receiver. From the test results of the transmitter and receiver, the lora results that were tested on the train could only send 40 meter radius data. And the outdoor test got the results of the Los Lora point at a radius of 320 meters. The conclusion in this study should use lora which has higher specifications. And use an antenna whose transmit power reaches 30dbi.

Keywords — gps neo 6m, Lora E32, Teori Ecluadian Distance.

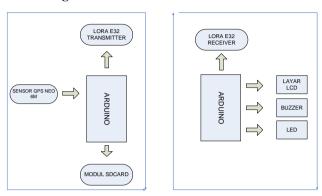
Abstrak— Transportasi kereta merupakan transportasi yang sering digunakan oleh masyarakat. kereta diminati banyak warga karena keamananya. Metode yang digunakan dalam penelitian ini adalah experimen pengujian parameter gps dan menggunakan lora Proses implementasi pada projek ini menguji parameter untuk mendeteksi kereta yang akan lewat. Dari hasil penelitian ini dilakukan beberapa kali uji coba pada kereta. Yaitu uji coba tracking dari tulungagung-kediri dan kediri-tulungagung. Tujuanya untuk menentukann titik checkpoint titik koordinat. Kemudian uji coba transmiter dan receiver. Dari hasil uji coba transmiter dan receiver mendapatkan hasil lora yang di uji coba pada kereta hanya bisa mengirim data radius 40 meter. Dan uji coba diluar ruangan mendapatkan hasil titik los lora di radius 320 meter. Kesimpulan pada penelitian ini sebaiknya memakai lora yang mempunyai spesifikasi lebih tinggi. Dan memakai antena yang daya kirimnya mencapai 30dbi.

Kata Kunci— Gps Neo 6m, Lora E32, Teori Ecluadian Distance.

I. Pendahuluan

Transportasi kereta merupakan transportasi yang sering digunakan oleh masyarakat.selain murah dan cepat,kereta diminati banyak warga karena keamananya.Menurut data dari LIPUTAN6.COM (1/11/2021,15:10 WIB) - badan pusat statiskik(BPS) mencatatkan jumlah penumpang kereta api selama januari – september 2021 diarea jawa mencapai 103,8 juta.kendati demikian transportasi kereta juga tidak luput dari berbagai masalah,khususnya di area persimpangan,banyak terjadi.menurut sekali kecelakaan yang data METRO.SINDONEWS.COM(13/12/2021.09:59 jakarta mencatat sepanjang januari hingga november 2021 terjadi 53 kasus kendaran tertabrak kereta di pelintasan liar maupun yang dijaga oleh petugas. Untuk demikian,dalam penelitian ini, harapan dibuatnya palang pintu otomatis dengan sistem kendali menggunakan gps akan mengurangi resiko terjadi kecelakan.jadi sistem ini akan bekerja ketika kereta dalam radius kurang lebih 1,5 km alat akan mendekteksi dan akan menggerakan palang otomatis pelintasan.sebagai rambu untuk mengetahui kereta yang lewat maka akan dipasang LED board.untuk dijadikan rambu sehingga pengguna lalu lintas bisa lebih waspada.

ISSN (Online): 2656-081X

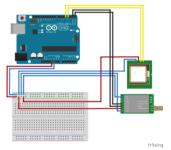

II. Metode Penelitian

Pada penelitian ini ada beberapa tahapan yang dilakukan untuk mencapai hasil akhir yang diinginkan, dijabarkan dalam beberapa tahapan sebagai berikut :

- 1. Studi literatur sebagai referensi / dasar yang digunakan untuk memulai project judul "*Prototype* Sistem Kedali Keamanan Perlintasan Kereta Api Menggunakan Gps Neo 6m" untuk mendapatkan hasil yang maksimal.[1]
- 2. Studi kasus pada beberapa perlintasan yang ada di wilayah kediri-Tulungagung untuk proses research data yang lebih konkret.
- 3. Perancangan Design Alat dilakukan untuk membuat rencana pembuatan alat untuk sistem kendali, mengetahui titik koordinat kereta yang akan melintas secara realtime dengan menggunakan mikrokontroller.
- 4. Pengujian alat dilakukan untuk mengetahui tingkat efesiensi sistem yang dirancang untuk sistem kendali palang pintu kereta ini. ketika menggunakan titik koordinat kereta secara realtime dengan yang masih manual.

5. Analisa dan Pembahasan Perlu dilakukannya analisa terhadap hasil dari alat yang sudah dibuat. Analisa ini dilakukan untuk mengukur /membandingkan penggunaan sistem koordinat kereta ini dengan sistem kendali yang dilakukan oleh petugas apakah bisa atau tidak.

a. Blok Diagaram

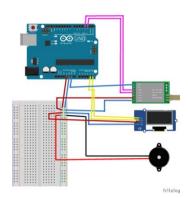


Gambar 1 Gambar Blok Diagram Alat

Gambar diatas blok diagram perancangan sistem. Cara kerja alat yaitu ada dua perangkat yang sudah dirancang. Yaitu yang pertama transmitter, tranmitter sendiri terdiri dari beberapa modul yaitu modul gps neo 6m, modul Lora E32 [2]dan modul microSD.cara kerjanya transmitter akan mengirimkan data sensor gps berupa titik koordinat yaitu latitude dan longitude. Kemudian data berupa latitude dan longitude ini akan diterima oleh receiver. Receiver nya ini terdiri dari 4 modul yaitu lora E32, buzzer sebagai alarm, lampu indikator LED sebagai penanda dan layar LCD 16x2. Cara kerja receiver sendiri yaitu menerima data mentah berupa titik koordinat latitude dan longitude. Kemudian data tersebut akan diolah ke dalam program tersebut menjadi bentuk jarak. Yaitu menghitung jarak saat ini gps dengan jarak tujuan yaitu area persimpangan. Ketika transmitter sudah mendekati area persimpangan yang ada receiver nya maka indikator akan otomatis nyala. Parameter yang digunakan untuk menghidupkan alarm, LED, dan buzzer adalah jarak

b. Transmitter

Gambar dibawah merupakan skematik dari rangkaian transmitter



Gambar 2 Skematik Rangkaian Transmitter

Cara kerja transmitter adalah mengirimkan data dari modul gps ke serial monitor receiver berupa titik koordinat yaitu latitude longitude.

c. Receiver

Gambar dibawah merupakan skematik dari rangkaian receiver.

Gambar 3 Skematik Rangkaian Receiver

Cara kerja receiver adalah lora akan menerima data. Kemudian data tersebut akan diolah oleh arduino. [3]Menjadi kedalam bentuk jarak. Ketika kereta (transmitter) sudah mendekati titik checkpoint, maka buzzer akan menyala dan data jarak akan ditampilkan oleh layar LCD

III. Hasil dan Pembahasan

Setelah melakuakan perancangan hardware dan program. Dan menguji beberapa modul langkah selanjutnya mengaplikan alat ke kendaran:

a. Hasil Tracking

Untuk pengujian yang pertama yaitu menguji gps. Modul gps di uji untuk mentracking jalan yang akan digunakan untuk menentukan *checkpoint*. Dibawah ini gambar hasil uji tracking kereta perjalananan Tulungagung-Kediri

Gambar 4 Hasil Uji Tracking Tulungagung-Kediri

Gambar diatas hasil data *excel* yang sudah diupload di *website gps visualizer*. Hasil garis merah adalah hasil jalur yang sudah dilalui gps ini. uji coba ini dimulai dari stasiun Kediri menuju ke stasiun Tulungagung. Terlihat garis merah adalah hasil trackingan gps yang sudah diupload ke *website*.

b. Hasil Pengujian Transmitter Dan Receiver

Dari hasil pengujian transmitter dan receiver ada dua hasil uji coba yaitu berhasil dan gagal. Berikut dibawah ini :

1. Uji coba berhasil

Uji coba berhasil yang pertama yaitu menguji titik los pada lora dengan di set titik checkpoint -8.076087 111.925758

Tabel 1 hasil uji coba 1

koordinat transmiter		Perbandingan jarak (m)		Ket
X1	x2	GPS	Google maps	
_8.074912	111.925758	3	3	
-8.076345	111.926116	18	18	64711
-8.076346	111.925601	35	35	SATU AREA
-8.076349	111.925666	50	50	
-8.076352	111.925384	78	78	
-8.07583	111.92501	116	150	SELISIH
-8.07579	111.924858	133	170	SELISIH
-8.075729	111.924705	152	190	SELISIH
-8.075689	111.924598	164	200	SELISIH
-8.075634	111.924453	182	220	SELISIH
-8.075601	111.924369	192	230	SELISIH
-8.075565	111.924263	204	240	SELISIH
-8.07556	111.924163	270	1 km	SELISIH

Data diatas merupakan hasil uji coba untuk mengetahui titik los pada Lora. X1 merupakan latitude dan x2 adalah longitude nya. Koordinat *checkpoint* adalah titik koordinat yang sudah ditandai. Untuk mengetahui seberapa jauh lora bisa mengirimkan sinyal dari *transmitter* ke *receiver* yaitu dengan menjauhi titik *checkpoint*. ada perbedaan jarak gps dengan jarak pada maps. nya karena gps yang dipakai disini menghitung jarak antar titik koordinat menggunakan rumus *ecluadian distance*. Jadi jika ditarik lurus titik *transmitter* dengan titik *receiver* nya makan akan diketahui jarak maksimal lora atau titik los nya di angka 214 meter. Sedangkan di *google maps* 240 meter.

2. Uji coba gagal

Dari hasil pengujian transmitter dan receiver di dalam kereta.Mendapatkan hasil yang kurang maksimal,

Tabel 2 Hasil Uji Coba Gagal

koordinat	transmiter	Perbandingan Jarak (m)		Kat	
X1	x2	GPS	Google maps	Ket	
-8.061367	111.904510	700	200	ERROR	
-8.060767	111.904457	630	260	ERROR	

Tabel diatas merupakan data yang terekam oleh *receiver* nya. Jadi penelitian ini dilakukan di daerah persimpangan kereta Faktor yang mempengaruhi error tersebut dikarenakan lora yang ada dikereta responnya lambat dan ada hitungan yang salah pada program *syntax* arduino.

c. Pembahasan

Dalam pengembangan penelitian ini. menggunakan teori *ecluadian distance* yaitu menghitung jarak antar titik koordinat gps dengan titik koordinat checkpoint.[4] Dalam studi kasus ini mengambil salah satu sampel uji coba diatas yaitu uji coba diluar kereta pada uji coba 1. Titik checkpoint x1 dan y1 (-8.076087 111.925758) kemudian titik terjauh (-8.07556 111.924163).

$$\partial = \sqrt{(x1-x2)^2+(y1-y2)^2} \cdot ratio bumi$$

$$= \sqrt{(-8.076087 - (-8.075560)^2 + (111.925758 - 111.924163)^2} \cdot 111$$

=204

IV. Kesimpulan

Berdasarkan pada proses pengujian, penelitian dan analisis hasil yang telah dilakukan dapat disimpulkan bahwa :

- Sebelum melakukan uji coba pada suatu sistem terlebih dahulu harus menguji modul yang akan digunakan. Untuk meminimalisir error yang akan terjadi jika semua modul sudah dirangkai
- 2. Waktu pengujian modul gps masih terjadi beberapa error yang terjadi yaitu delay beberapa menit antara 5 10 menit ketika akan on. Delay ini disebabkan karena spesifikasi gps yang tergolong standart. Jadi ada nya fluktuatif rentan waktu yang cukup lama. Dan delay menerima sinyal berupa latitude dan longitude kurang lebih 5 menit.
- 3. Uji coba alat yaitu transmiter dan receiver belum sempurna terdapat beberapa error pada perhitungan ecluadian nya.
- 4. Titik los pada lora ada diantara jarak 180 hingga 250 meter tergantung situasi dan kondisi. Titik terjauhnya adalah 329 meter.

V. Daftar Pustaka

- [1] D. Sheet, "NEO-6."
- [2] S. X. Dip and W. Module, "E32-433T30D User Manual."
- [3] Catalex, "Micro SD Card Card Adapter Reader Module for Arduino," *Data Sheet*, pp. 1–2, 2013, [Online]. Available:

https://curtocircuito.com.br/datasheet/modulo/cartao_mic

ro_SD.pdf.

[4] C. A. Pamungkas, "Aplikasi Penghitung Jarak Koordinat Berdasarkan Latitude Dan Longitude Dengan Metode Euclidean Distance Dan Metode Haversine," *J. Inf. Politek. Indonusa Surakarta*, vol. 5, no. 2, pp. 8–13, 2019.