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Abstract

Gossypol, a natural polyphenolic compound derived from Gossypium species, has
demonstrated broad anticancer activity; however, its clinical application is limited by poor
pharmacokinetic properties and toxicity. This study employed an integrated computational
pharmacology approach to evaluate gossypol and its derivatives, identify potential cancer-
related target proteins, and elucidate their molecular interactions. ADMET profiling,
cytotoxicity prediction, target identification, protein expression and prognostic analysis, and
molecular docking were systematically performed. Several gossypol derivatives, particularly
anhydrogossypol and gossypolone, exhibited improved drug-likeness, reduced predicted
toxicity, favorable anticancer activity, and enhanced selectivity toward cancer cells compared
with the parent compound. PASS-based target prediction consistently identified DNA-3-
methyladenine glycosylase (MPG), a key enzyme in the base excision repair pathway, as a
high-confidence molecular target. Clinical relevance analysis revealed that elevated MPG
expressions were associated with unfavorable prognosis and were highly expressed across
multiple cancer types, including colorectal, breast, and lung cancers. Molecular docking
demonstrated strong binding affinities of selected derivatives within the MPG active site,
involving conserved and functionally important residues such as TYR-127, TYR-165, CYS-
167, and ARG-182. These findings suggest that gossypol derivatives may exert anticancer
effects by modulating MPG-mediated DNA repair mechanisms. Overall, this study highlights
MPG as a promising therapeutic target and supports further experimental investigation of
optimized gossypol derivatives as potential anticancer agents.

Keywords: Cancer target; Computational pharmacology; DNA-3-methyladenine
glycosylase; Gossypol derivatives

1. INTRODUCTION

Cancer continues to pose a significant global health burden and is persistently
ranked as the second leading cause of death worldwide (Bray et al., 2024). Despite
significant advances in chemotherapy and targeted therapy, treatment resistance and
systemic toxicity remain major challenges. Pharmacological identification of novel

molecular targets and the development of compounds with increasing pharmacological
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effects are critical aspects for advancing cancer treatment strategies (Koirala &
DiPaola, 2024).

Gossypol is a natural compound from cotton plants (Gossypium spp., Figure 1)
which is classified as phenolic aldehyde. These derivatives have been extensively
reported for their broad-spectrum anticancer activity. Prior studies have demonstrated
its ability to hinder tumor cell proliferation and cancer progression in various cancer
types, including breast (Xiong et al., 2017), colorectal (Lan et al., 2015), lung (Wang
et al., 2018), liver (Elkattan et al., 2025), prostate (Lin, 2009), and pancreatic cancers
(Lee et al., 2022). Nevertheless, the clinical application of gossypol has been limited
by unfavorable pharmacokinetic properties and toxicity (Gadelha et al., 2014; Sun et
al., 2025). To overcome these limitations, several gossypol derivatives have been
synthesized, showing structural alterations that may enhance selectivity,

bioavailability, and target specificity.

Figure 1. Cotton plants (https://www.stuartxchange.org/BulakCotton)

DNA repair pathways play a crucial role in maintaining genomic stability.
Abnormal state of these pathways is closely associated with cancer development and
progression (Alhmoud et al., 2020). DNA-3-methyladenine glycosylase (MPQG) is a key
enzyme involved in the base excision repair (BER) pathway which is responsible for
fixing the alkylated and damaged DNA bases (Kladova & Kuznetsova, 2025).

Overexpression of MPG has been implicated in tumorigenesis, cancer cell survival, and
-
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therapeutic resistance, highlighting its potential as a molecular target in cancer therapy
(Agnihotri et al., 2014).

Although the anticancer activity of gossypol has been classically attributed to its
role as a BH3 mimetic that inhibits anti-apoptotic Bcl-2 family proteins, thereby
activating mitochondrial-dependent apoptotic pathways (Huang et al., 2010; Wong et
al., 2012; Ni et al., 2013; Sadahira et al., 2014). While this mechanism has been
extensively documented, it does not fully account for the diverse anticancer efficacy of
gossypol derivatives against various cancers. On the other hand, targeting MPG
represents a basically distinct therapeutic strategy, due to MPG functions associated
with DNA damage recognition and BER, contributing to genomic maintenance and
cancer cell survival under genotoxic stress (Kladova & Kuznetsova, 2025). Unlike Bcl-
2 inhibition, which primarily induces apoptosis, MPG modulation may disrupt DNA
repair capacity and metabolic stress adaptation, potentially sensitizing cancer cells to
endogenous damage and therapeutic agents. This mechanistic divergence marks MPG
as an underexplored molecular target that expands the pharmacological landscape of
goysspol beyond its established anticancer mechanism.

Computational pharmacology has emerged as a powerful approach for accelerating
drug discovery by integrating in silico prediction of pharmacokinetic properties,
biological activity, and molecular interactions (Wu et al., 2020). This present study
comprehensively utilized computational pharmacology framework to predict gossypol
and its derivatives, identify promising cancer-related target proteins, and investigate
the interaction of these active compounds with MPG. By integrating ADMET profiling,
anticancer activity prediction, target identification, expression and prognostic analysis,
and molecular docking, this work aims to provide mechanistic insights into the
anticancer potential of gossypol derivatives and foster MPG as a promising therapeutic

target for further experimental investigation.
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2. METHODOLOGY
2.1 ADMET profiling

The ADMET profiles of gossypol and its derivatives were predicted using some
online platforms including ADMETLAB 3.0 (https://admetlab3.scbdd.com/) and

ProTox 3.0 (https://tox.charite.de/protox3/). Simplified Molecular-Input Line-Entry

System (SMILES) of each compound was assigned as input for this study (Table 1).
Physicochemical descriptors such as molecular weight (MW), number of hydrogen
bond acceptors (nHA), number of hydrogen bond donors (nHD), octanol/water
partition coefficient (LogP), and topological polar surface area (TPSA) were calculated
to find out whether the compounds were accepted or rejected by Lipinski’s rule of five
(RO5). Human intestinal absorption (HIA) was predicted and expressed as percentage
absorption, with values > 30% considered indicative of moderate to high oral
absorption. Distribution properties were estimated by predicting the steady-state
volume of distribution (VDss, L/kg). Metabolic stability was estimated in predicted
human liver microsomal (HLM) stability, reported as intrinsic clearance time (< 30 min
indicating low metabolic stability). Excretion was evaluated by predicting plasma
clearance (CLplasma, mL/min/kg). Meanwhile, toxicity was evaluated by predicting
acute oral toxicity, expressed as the median lethal dose (LDso, mg/kg) (Banerjee et al.,
2024; Fu et al., 2024).
2.2 Predictive cytotoxicity level, selectivity index, and target protein

The cytotoxicity and target protein of gossypol and its derivatives was predicted

using the Way2Drug web platform (https://way2drug.com/clc-pred/), an online

computational tool for biological activity estimation based on chemical structure. This
prediction is based on quantitative structure-activity relationship (QSAR) models
trained on experimentally validated cytotoxicity data. SMILES of each compound was
exploited as an input descriptor. The output of this prediction was predictive half-
maximal inhibitory concentration (pICso) and predicted selectivity index (SI) by

dividing pICso of cancer cells with pICso of non-cancerous cells. Additionally, target
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protein candidates of gossypol and its derivatives output were active probabilities (Pa),
inactive probabilities (Pi), and invariant accuracy of prediction (IAP) (Lagunin et al.,
2023, 2024).
2.3 Protein expression and prognostic relevance analysis

After finding the predictive cancer target protein, we evaluated its protein
expression pattern and prognostic relevance through Human Protein Atlas (HPA)

database (https://www.proteinatlas.org/) which is included as publicly available data.

Cancer-specific expression was evaluated by comparing expression levels across
multiple tumor types. Prognostic analysis was performed using the survival analysis
tools provided by HPA, which assess the relationship among protein expression and
overall patient survival. Patients were stratified into high- and low-expression groups
based on median DNA-3-methyladenine glycosylase (MPG) expression, and survival
outcomes were visualized using Kaplan-Meier plots. Statistical significance was
determined by log-rank testing as provided by the database.
2.4 Molecular docking
2.4.1 Protein preparation

The three-dimensional crystal structure of human MPG was retrieved from the

Protein Data Bank RCSB (https://www.rcsb.org) with code identified 7XFH. Protein

preparation involved removal of water molecules, and non-essential heteroatoms. Polar
hydrogen atoms were added, and the protein structure was optimized to ensure suitable
geometry for docking analysis using AutoDock Tools (ADT) version 1.5.7 (Morris et
al., 2000). Due to an absence of co-crystallized ligand on MPG protein structure and
FDA-approved MPG inhibitor, we performed the molecular docking with sunitinib
(CID: 5329102). Moreover, as previously stated, sunitinib was able to inhibit the
activity of alkyladenine DNA glycosylase (Song et al., 2023).
2.4.2 Ligand preparation

Structure data file format (SDF) chemical structures of gossypol and its derivatives

were obtained from the PubChem database (https://pubchem.ncbi.nlm.nih.gov/) . All

DNA-3-Methyladenine Glycosylase as Cancer Target Protein Of Gossypol Derivatives: A Computational I 175
Pharmacology Analysis


https://www.proteinatlas.org/
https://www.rcsb.org/
https://pubchem.ncbi.nlm.nih.gov/

&\, J URNAL BIOSENSE
% urnal Penelitian Biologi dan Terapannya

Volume 9 No. 1, Januari 2026, Hal 171 - 194 E-ISSN: 2622 - 6286

SDF files were converted into three-dimensional formats using CACTUS online

chemical translator (https://cactus.nci.nih.gov/translate/) and subjected to geometry

optimization and energy minimization with Merck Molecular Forcefield 94 (MMFF94)
and steepest descent algorithm in the Avogadro software (Hanwell et al., 2012).

2.4.3 Grid and docking parameterization

Prior to setting up the docking parameter, the grid box was adjusted as the binding
pocket position and size. The binding pocket position was predicted using PrankWeb

online platform (https://prankweb.cz/) and obtained the fix position at 143.55 x 109.56

x 139.68 A®and the size was 60x60x60 A>. Subsequently, the docking parameter was
setting up the genetic algorithm within 15 running and population size as much as 150
population (Faisal et al., 2024).
2.4.4 Running molecular docking and results interpretation

Molecular docking was performed in AutoDock Tools version 1.5.7 using AMD
Ryzen 5-5500U with 12 cores and AMD Radeon Graphics Unit. This docking study
found both binding affinity and inhibition constant. The docking poses were visualized
in Biovia Discovery Studio (https://discover.3ds.com/discovery-studio-visualizer-

download) for 2D and PyMOL (Schrodinger and DeLano, 2020). Not only binding

affinity and inhibition constant, but also molecular interactions were analyzed to
identify key hydrogen bonds, hydrophobic contacts, and n-n interactions among MPG

and the docked compounds.

3. RESULTS AND DISCUSSION
3.1 Gossypol and its derivatives structure elucidation and ADMET prediction

The chemical structures and molecular characteristics of gossypol and its eight
derivatives are summarized in Table 1. Gossypol (C30H300s) is a naturally occurring
polyphenolic binaphthyl dialdehyde isolated from Gossypium species and is known for
its broad biological activities, including anticancer effects (Lin, 2009; Lan et al., 2015;

Xiong et al., 2017; Wang et al., 2018; Lee et al., 2022; Elkattan et al., 2025). Structural
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derivatization of gossypol through methoxylation, deoxygenation, oxidative
modification, and dimer cleavage resulted in compounds with altered molecular
weights, polarity, and functional groups (Miller & Adams, 1937; Bell et al., 1975;
Stipanovic et al., 1975; Dao, 2000; Wei, Rega, et al., 2009; Wei et al., 2010). These
modifications are expected to influence membrane permeability, metabolic stability,
and molecular target interactions (Saraswat et al., 2022).

Hemigossypol and its analogs possess approximately half the molecular weight of
the parent compound (gossypol), a feature considered advantageous for drug
development due to improved compliance with drug-likeness criteria (Bell et al., 1975;
Lipinski et al., 2012). Methoxylated derivatives such as 6-methoxygossypol and 6,6'-
methoxygossypol reduce phenolic hydrogen bond donors and increase lipophilicity,
which may enhance bioavailability (Stipanovic et al., 1975; Lipinski et al., 2012).

Table 1. Gossypol and its derivatives CID, chemical formula, structure and references

No Compound Name [CID] Formula Structure SMILES

CC1=CC2=C(C(=C(C(=C2C
(C)C)0)0)C=0)C(=C1C3=
C(C4=C(C=C3C)C(=C(C(=

C4C=0)0)0)C(C)C)0)O

1 Gossypol [35053] C30H300s8

CC1=CC2=C(C(=C(C(=C2C
(C)C)0)0)C=0)C(=C1C3=
C(C4=C(C=C3C)C(=C(C(=
C4C=0)0)0C)C(C)C)0)O

6-Methoxygossypol

[3085061] C31H320s

CC1=CC2=C(C(=C1)O)C(=

3 Hemigossypol [115300] Ci15sH1604 C(C(=C2C(C)C)0)0)C=0

0 o H20 CC1=CC2=C(C(=C(C(=C2C
6,6’-Methoxygossypol " OO o (C)C)0C)0)C=0)C(=C1C3
[375713] CszH340s ° f OO | =C(C4=C(C=C30)C(=C(C(=
o C4C=0)0)0C)C(C)C)O)O
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No Compound Name [CID] Formula Structure SMILES

6-Methoxyhemigossypol CC1=CC2=C(C(=C1)0)C(=

Ci6H1804 | || |

3 [623685] ' C(C(=C2C(C)C)0C)0)C=0
6-Deoxyhemigossypol CC1=CC2=C(C(=C1)O)C(=
6 [618501] CisHisOs C(C=C2C(C)C)0)C=0
SN CC\1=CC2=C(C(=C(C3=C
- Anhydrogossypol CioHaO :,Jt\ /L . L\ A B s OC(=C23)/C1=C/4\C(=CC5
[135426832] 30HI6L6 TN T LT =C(C(=0)C(=0)C6=COC4=
o I C56)C(C)C)C)0)0)C(C)C
8 Apogossypol [454878] CasH3006 \T’
T o o CC1=CC2=C(C(=C(C=C2C(
. ’s |J o =C1C3=C(C4=CC(=C(C(=C
‘ ! \{ /IL_ 4C=C3C)C(C)C)0)0)0)0)
[ 0)0)C(C)C
9 G lone [197045 C30H260 o
ossypolone [ ] 30H26010 . I\ ; CC1=C(C(=C2C(=C(C=C(
T 10 ‘[/ I C2=C10)C(C)C)0)0)C=0)
O T e 0)C3=C(C(=0)C4=C(C(=0)
) L,,,l L l C(=0)C(=C4C3=0)C=0)C(
I c)oC

P

Predicted ADMET properties are ;;reéented in Table 2. Gossypol violated
Lipinski’s rule of five due to its high molecular weight, excessive hydrogen bond
donors, and large polar surface area, consistent with previous reports describing its
limited clinical applicability (Lipinski et al., 2012; Sudomova & Hassan, 2022). In
contrast, most derivatives complied with Lipinski criteria, indicating improved oral
drug-likeness.

All compounds demonstrated acceptable predicted human intestinal absorption
(HIA > 30%), except gossypolone, which showed reduced absorption likely due to its
elevated TPSA (>180 A2) (Veber et al., 2002). Volume of distribution (VDss) values
for all compounds were within the optimal pharmacokinetic range (0.04-20 L/kg),

suggesting adequate tissue penetration (Ahmad et al., 2023).
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Most derivatives were predicted to be unstable in human liver microsomes (HLM
< 30 min), indicating rapid metabolism; however, gossypolone displayed improved
microsomal stability (>30 min) (Liu et al., 2015). Predicted plasma clearance values
ranged from low to moderate, while acute toxicity predictions showed a marked
reduction in toxicity for modified derivatives compared to gossypol, particularly for 6-
methoxyhemigossypol and 6,6’-methoxygossypol, which were classified as toxicity
classes V-VI (Shah et al., 2020; Banerjee et al., 2024).

Collectively, these ADMET predictions suggest that structural modification of
gossypol substantially improves its pharmacokinetic feasibility and safety profile,
partially overcoming the intrinsic drug-likeness limitations of the parent compound.
Importantly, the combination of acceptable absorption, tissue distribution, and reduced
predicted toxicity fosters the suitability of selected gossypol derivatives for further
biological evaluation. These findings provide a pharmacokinetic rationale for
prioritizing specific derivatives as lead candidates for subsequent anticancer activity
assessment and molecular target validation.

Table 2. ADMET profiles of gossypol and its derivatives

Compound MW Lipinski b VDss HLM CLplasma LDso
Name (@moyy ~"HA  nHD - LogP  TPSA Rules® HIA (L/kg)  stability® (mVUmin/kg)® (mg/kg)"

GP 518.19 8 6 3395 15552 Rejected >30% 0.992 <30 min 8325 325
6-MGP 532.21 8 5 3871 14452 Accepted >30% 1.047 <30 min 6716 3270
HGP 260.1 4 3 2.985 77.76 Accepted >30% 1.031 <30 min 9.003 1425
DMGP 546.23 8 4 4279 13352 Accepted >30% 1.164 <30 min 5.151 3270
6-MHGP 274.12 4 2 3886  66.76 Accepted >30% 1279 <30 min 6.222 9000
6-DHMGP 244.11 3 2 3.765 57.53 Accepted >30% 3.737 <30 min 6.341 2000
AHGP 482.17 6 2 5017 10088  Accepted >30% 1.862 <30 min 8.984 3200
APGP 484.99 6 6 3534 12138 Accepted >30% 0.797 <30 min 13.979 3000
GPO 544.20 10 4 2.42 18334 Accepted <30% 0.887 > 30 min 10.144 2000
SUN 398.21 6 3 3018 77.23 Accepted >30% 3297 <30 min 10.722 500

Lipinski Rules: MW < 500, logP < 5, nHA < 10, nHD < 5; ®HIA: human intestinal absorption (HIA+ <
30%, HIA- > 30%); “VDss: optimal 0.04-20 L/kg; “HLM: human liver microsomal (stable+ HLM > 30
min, stable- HLM < 30 min); °“CLpsma: clearance plasma penetration in ml/min/kg (>15 ml/min/kg: high
clearance; 5-15 ml/min/kg: moderate clearance; <5 ml/min/kg: low clearance); ‘LDso: half-maximal
lethal dose in mg/kg (Class I: LDso <5, Class II: 5 <LDso < 50, Class III: 50 <LDso <300, Class IV: 50
< LDso <2000, Class V: 2000 < LDso < 5000, and Class VI: LDso > 5000).

3.2 Predicted cytotoxicity and selectivity index of gossypol and derivatives

The predicted antiproliferative activities (pICso) of gossypol and its derivatives
against breast, colorectal, and liver cancer cell lines are summarized in Table 3.
Overall, several derivatives exhibited comparable or superior predicted anticancer

activity relative to the reference drug sunitinib, indicating that structural modification
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of gossypol can enhance cytotoxic potency across multiple cancer types.

In breast cancer models, 6,6’-methoxygossypol demonstrated the highest predicted
activity against ZR-75-1 cells (pICso= 6.48), exceeding both the parent compound
gossypol and sunitinib. In addition, gossypolone displayed strong predicted activity
against MCF-7 and T47D cells, suggesting that oxidative modification of the gossypol
scaffold may enhance anticancer efficacy. In colorectal cancer models, 6,6'-
methoxygossypol, apogossypol, and anhydrogossypol consistently showed elevated
predicted activity, particularly against COLO205 and HCT-8 cell lines, highlighting
their potential effectiveness in malignancies characterized by dysregulated survival and
DNA repair pathways.

HepG2 liver cancer cells exhibited moderate predicted sensitivity to all
compounds, which may reflect the high metabolic capacity of hepatic cells;
nevertheless, gossypolone emerged as the most potent derivative in this model.
Importantly, non-cancerous HEK293T and PBMC cells displayed generally lower
predicted sensitivity compared with cancer cell lines, suggesting the presence of a
potential therapeutic window and reduced nonspecific cytotoxicity.

Notably, these computational findings are consistent with experimental
observations, who demonstrated that 6,6’-methoxygossypol, 6-methoxygossypol, and
apogossypol exerted stronger anticancer activity than gossypol in MCF-7, Caco-2, and
SiHa, and LNCaP cells (Wang et al., 2008; Zhan et al., 2015). This concordance
between computational predictions and prior experimental data further supports the
reliability of the present model and reinforces the potential of methoxylated gossypol
derivatives as optimized anticancer scaffolds.

Table 3. Gossypol and its derivatives predicted half-maximal concentration (pICso)

Cancer Compound pICs
Type GP 6-MGP HGP DMGP 6-MHGP 6-DHMGP AHGP APGP GPO SUN

Breast Cancer

MCEF7 S5.11  5.16 4.80 5.19 5.11 4.80 5.10 4.69 5.33 4.89
T47D 6.26 6.23 6.08 6.24 6.11 6.04 5.31 5.66 5.86 5.92
ZR-75-1 552 5.88 5.25 6.48 5.79 5.38 5.98 5.46 5.77 6.79
Colorectal Cancer

Caco-2 471 475 4.72 4.72 4.76 4.69 4.96 4.77 4.83 5.26
COLO205 5.82  6.06 5.53 6.10 5.47 5.44 5.59 5.90 5.96 5.09
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Type

GP 6-MGP HGP DMGP 6-MHGP 6-DHMGP AHGP APGP GPO SUN
HCT-8 524 582 5.52 5.92 6.16 542 5.80 5.63 5.34 5.46
SW-620 478 5.06 4.68 5.26 4.81 5.01 5.57 5.12 5.76 5.21
Liver Cancer
HepG2 524 522 5.12 5.26 5.22 4.95 5.30 5.19 5.42 4.87
Non-cancerous
HEK293T 4.68 4.75 4.67 4.73 4.63 4.64 4.63 4.84 4.63 5.14
PBMC 528 498 5.12 5.04 5.41 5.16 4.95 5.15 5.55 4.78

plCso. Predicted Half-maximum inhibitory concentration; GP: Gossypol; 6-MGP: 6-Methoxygossypol;
HGP: Hemigossypol; DMGP: 6,6’-Methoxygossypol; 6-MHGP: 6-Methoxyhemigossypol; 6-DHMGP:
6-D§9xyhemigossypol; AHGP: Anhydrogossypol; APGP: Apogossypol; GPO: Gossypolone; SUN:
Sunltlsrlé:?éctivity index (SI) values calculated using HEK293T and PBMC cells are
presented in Table 4. Several derivatives exhibited SI values close to or exceeding
unity, particularly in colorectal cancer models, indicating preferential cytotoxicity
toward cancer cells. Apogossypol and anhydrogossypol demonstrated improved
selectivity compared with gossypol, while 6,6’-methoxygossypol combined strong
potency with moderate selectivity. Although some SI values were below averages, this
behavior is common for multitarget natural products and may be improved through
further optimization (P6hner et al., 2022).

In breast cancer models, most compounds demonstrated SI values > 1.0,
particularly against T47D and ZR-75-1 cells. Notably, 6,6’-methoxygossypol displayed
consistently high selectivity across both HEK293T and PBMC references, especially
against ZR-75-1 cells (SI= 1.37 and 1.29, respectively), surpassing gossypol and
approaching or exceeding the selectivity of sunitinib. Gossypolone also showed
favorable selectivity against MCF-7 cells (SI= 1.15), suggesting that oxidative
modification of the gossypol scaffold may reduce nonspecific cytotoxicity while
preserving anticancer activity. In contrast, apogossypol exhibited comparatively lower
selectivity in breast cancer models, indicating that removal of aldehyde groups alone
may not be sufficient to maximize tumor specificity in this context.

Selectivity trends were particularly pronounced in colorectal cancer cell lines.

Several derivatives, including 6,6"-methoxygossypol, anhydrogossypol, and
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gossypolone, demonstrated SI values consistently above unity against COLO205,
HCT-8, and SW-620 cells. Anhydrogossypol showed robust selectivity across multiple
colorectal models, with SI values reaching 1.25-1.21 (HCT-8) and 1.20-1.13 (SW-
620), suggesting an improved therapeutic window relative to the parent compound.
These findings are notable given the frequent resistance of colorectal cancers to
conventional therapies and suggest that optimized gossypol derivatives may
preferentially target malignant cells while sparing normal tissues.

In HepG2 liver cancer cells, most compounds exhibited moderate but consistent
selectivity, with SI values generally ranging from 1.07 to 1.17. Gossypolone again
emerged as one of the more selective derivatives (SI= 1.17), while sunitinib showed
comparatively lower selectivity toward cancer cells relative to PBMCs. The modest
selectivity observed across all compounds in this model may reflect the high metabolic
activity of hepatic cells, which can limit differential cytotoxic responses between
cancerous and non-cancerous tissues.

The selectivity index analysis indicates that rational structural modification of
gossypol can enhance cancer cell preference, particularly in breast and colorectal
cancer models. Among the derivatives, 6,6'-methoxygossypol, anhydrogossypol, and
gossypolone consistently demonstrated favorable selectivity profiles across multiple
cancer types, often outperforming the parent compound and, in some cases, the
reference drug sunitinib. These improvements in selectivity, together with previously
observed enhancements in drug-likeness and anticancer potency, suggest a broader

therapeutic window for these derivatives.
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Table 4. Gossypol and its derivatives selectivity index (SI) prediction
Predictive SI of HEK293T and PBMC

Cancer

Type GP 6-MGP HGP DMGP 6-MHGP 6-DHMGP AHGP APGP GPO SUN

Breast Cancer

N N TR
Colorectal Cancer
cen WA mew oen (T bR e o
swew BB HE s eses 10 LI
Liver Cancer

GP: Gossypol; 6-MGP: 6-Methoxygossypol; HGP: Hemigossypol; DMGP: 6,6’-Methoxygossypol; 6-
MHGP: 6-Methoxyhemigossypol; 6-DHMGP: 6-Deoxyhemigossypol; AHGP: Anhydrogossypol,
APGP: Apogossypol; GPO: Gossypolone; SUN: Sunitinib.

3.3 Target prediction and clinical relevance

PASS-based target prediction identified 3-methyladenine DNA glycosylase
(MPG) as a high-confidence molecular target for most gossypol derivatives, with
probability of activity (Pa) values exceeding 0.90 (Table 5). MPG is a key enzyme in
the base excision repair (BER) pathway, where it initiates repair of alkylated and
damaged DNA bases, thereby maintaining genomic integrity (Kladova & Kuznetsova,
2025). Dysregulated or elevated MPG expression has been reported in several
malignancies and is frequently associated with enhanced DNA repair capacity,
therapeutic resistance, and unfavorable clinical outcomes (Agnihotri et al., 2014; Barry
et al., 2025; Trivedi et al., 2008).

The identification of MPG as a putative target is particularly relevant in the context
of anticancer therapy, as inhibition of BER components can sensitize cancer cells to
endogenous and therapy-induced DNA damage. Notably, gossypol and its derivative

named apogossypol have previously been shown to disrupt key cancer cell survival
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pathways, including inhibition of anti-apoptotic Bel-2 family proteins such as Bcl-2

and Bcl-XL (Huang et al., 2010; Ni et al., 2013; Wei, Kitada, et al., 2009; Zhan et al.,

2015).

These observations suggest that gossypol derivatives may exert anticancer activity

through dual mechanisms, involving both inhibition of DNA repair via MPG and

suppression of anti-apoptotic signaling pathways. This multitarget mode of action is

consistent with the broad-spectrum anticancer activity observed in the present study

and further supports MPG as a biologically plausible and therapeutically relevant target

for optimized gossypol-based compounds.

Table 5. The most feasible predicted target protein of gossypol and its derivatives

Protein

Compound Name Code Protein Name Pa* Pi® IAP¢
MCL1 Myeloid cell leukemia 1 0.723  0.002 0.990
Gossypol RSG17 Regulator of G-protein 0.547 0.056 0.877
Signaling 17
3-methyladenine DNA 0.917 0.001 0.976
MPG
glycosylase
MCL1 Myeloid cell leukemia 1 0.644 0.002 0.990
6-Methoxygossypol HSP10 Heat Shock Protein 10 0.616 0.006 0.958
ALOX12 Arachidonate 12- 0.577 0.019 0.904
Lipoxygenase
ALOX15 Arachidonate 15- 0.567 0.044 0.878
Lipoxygenase
MPG 3-methyladenine DNA 0.978 0.000 0.976
glycosylase
RSG17 Regulator of G-protein 0.791 0.007 0.877
. Signaling 17
Hemigossypol ALOX15  Arachidonate 15- 0.783 0.014 0.878
Lipoxygenase
HSP10 Heat Shock Protein 10 0.775 0.002 0.958
NEK6 NIMA Related Kinase 6 0.762 0.002 0.968
MPG 3-methyladenine DNA 0.917 0.001 0.976
glycosylase
MCL1 Myeloid cell leukemia 1 0.644 0.002 0.990
, HSP10 Heat Shock Protein 10 0.616 0.006 0.958
6,6’-Methoxygossypol i
ALOX12 Arachidonate 12- 0.577 0.019 0.904
Lipoxygenase
ALOX15 Arachidonate 15- 0.567 0.044 0.878
Lipoxygenase
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Compound Name Pé(:)tg;n Protein Name Pa®* Pi® IAP¢
MPG 3-methyladenine DNA 0.958 0.001 0.976
glycosylase
ALOX12 Arachidonate 12- 0.822  0.005 0.904
6- Lipoxygenase
Methoxyhemigossypo] ALOX15 Arachidonate 15- 0.795 0.012 0.878
Lipoxygenase
HSP10 Heat Shock Protein 10 0.735 0.003 0.958
PKNI1 Protein Kinase N1 0.731 0.002 0.871
MPG 3-methyladenine DNA 0.971 0.001 0.976
glycosylase
RSG17 Regulator of G-protein 0.752 0.012 0.877
Signaling 17
6-De0xyhemigossypo] HSP10 Heat Shock Protein 10 0.735 0.003 0.958
PKNI1 Protein Kinase N1 0.733 0.002 0.871
SERCA3 Sarco/Endoplasmic 0.669 0.013 0.960
Reticulum Calcium
ATPase 3
ALOXI15 Arachidonate 15- 0.934 0.004 0.878
Lipoxygenase
MPG 3-methyladenine DNA 0.920 0.001 0.976
glycosylase
Anhydrogossypol RSG17 Regulgtor of G-protein 0.904 0.002 0.877
signaling 17
HSD17B10 3-hydroxyacyl-CoA 0.883 0.007 0.878
dehydrogenase type-2
ALOXI12 Arachidonate 12- 0.867 0.004 0.904
Lipoxygenase
MCLI Myeloid cell leukemia 1 0.751 0.002 0.990
RSG17 Regulator of G-protein 0.637 0.031 0.877
signaling 17
ALOXI15 Arachidonate 15- 0.589 0.040 0.878
Apogossypol Lipoxygenase
HSD17B10 3-hydroxyacyl-CoA 0.542 0.055 0.878
dehydrogenase type-2
BLM Bloom syndrome RecQ- 0.424 0.079 0.854
like helicase
MPG 3-methyladenine DNA 0.971 0.001 0.976
glycosylase
MCL1 Myeloid cell leukemia 1 0.905 0.001 0.990
Gossypolone ALOX15 Arachidonate 15- 0.853 0.008 0.878
Lipoxygenase
RSG17 Regulator of G-protein 0.825 0.005 0.904
signaling 17
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Compound Name Pé(:)tg;n Protein Name Pa®* Pi® IAP¢
NEK6 NIMA Related Kinase 6 0.808 0.001 0.968

“Pa (probability “to be active”): chance that the studied compound is belonging to the sub-class of active
compounds; °Pi (probability “to be inactive™): chance that the studied compound is belonging to the sub-
class of inactive compounds; ‘AP (invariant accuracy of prediction: the average accuracy of prediction
that is obtained for the whole PASS training set in leave-one-out cross-validation procedure.

Importantly, the clinical relevance of MPG targeting is supported by prognostic
analysis (Figure 2), which demonstrates a significant relationship among MPG high
expression and unfavorable overall survival in kidney renal clear cell carcinoma.
Furthermore, expression profiling (Figure 3) revealed high MPG expression across
colorectal, breast, and lung cancers. These clinical relevancy provides compelling
support for the therapeutic targeting of MPG and justify further investigation of MPG-

directed inhibitors in cancer treatment.
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Figure 2. Validated prognostic analysis indicates that increased MPG expression

correlates with unfavorable survival in kidney renal clear cell carcinoma, (A)
TCGA and (B) validation.
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Figure 3. MPG strong expression of patient cancer tissues, (A) Colorectal cancer, (B)
Breast cancer, and (C) Lung cancer (retrieved from https://proteinatlas.org).

3.4 Molecular docking and binding interaction analysis

In order to investigate whether gossypol and its derivatives are potent in MPG
regulation, we performed molecular docking of gossypol and its derivatives on MPG’s
structure (PDB ID: 7XFH). The molecular docking study revealed that
anhydrogossypol exhibited the strongest binding affinity and the lowest inhibition
constant/Ki (-7.55 kcal/mol; Ki= 2.92 uM), followed closely by gossypolone (-7.48
kcal/mol; Ki= 3.30 uM) (Table 6). Interestingly, sunitinib showed weaker binding
affinity (-5.15 kcal/mol, 169.06 uM) while compared to anhydrogossypol and
gossypolone. This finding indicates that both compounds have promising potency as
MPG inhibitors. Nevertheless, experimental validation is necessary to prove present
findings.

The native compound gossypol demonstrated a moderate binding affinity of -6.33
kcal/mol with an inhibition constant of 22.73 puM. It seemed structural modifications
influenced binding performance, as seen with apogossypol (-6.63 kcal/mol; Ki= 13.90
uM), which indicated improvement affinity relative to gossypol. In contrast, methoxy
substitutions including 6-methoxygossypol and 6,6’-methoxygossypol caused slightly
binding affinity reduction (-5.98 and -6.04 kcal/mol, respectively). Moreover,
hemigossypol. 6-methoxyhemigossypol, and 6-deoxyhemigossypol exhibited the

weakest interaction, with binding affinities around -4.81 to -4.82 kcal/mol and high
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inhibition constants (~295-298 uM).

Table 6. Binding affinity and inhibition constant of gossypol and its derivatives on
MPG structure (PDB ID: 7XFH)
Binding Inhibition

No Compound Name Affinity Constant Residual Interaction
(kcal/mol) (M)

1 Gossypol -6.33 22.73 ILE-161, ARG-182, SER-216,
PRO-218, LYS-220

2 6-Methoxygossypol -5.98 41.30 ILE-161,CYS-167, ARG-182,
SER-216, PRO-218

3 Hemigossypol -4.81 297.69 TYR-162, TYR-165, SER-219

4 6,6’-Methoxygossypol -6.04 37.68 ILE-161, ARG-182, SER-216,
PRO-218, SER-286

5 6 -4.81 296.06 TYR-165, ARG-182, SER-

Methoxyhemigossypol 216, GLY-217, PRO-218,

LYS-220, SER-286

6  6-Deoxyhemigossypol -4.82 294.87 TYR-127, ARG-182, VAL-
262, VAL-264

7  Anhydrogossypol -7.55 2.92 TYR-127,ILE-161, TYR-165,

CYS-167, ARG-182, SER-
216, PRO-218, LYS-220,
SER-286

8  Apogossypol -6.63 13.90 TYR-159, ILE-161, CYS-167,
ARG-182, SER-216, PRO-
218, SER-219, LYS-220

9  Gossypolone -7.48 3.30 ALA-134, GLY-163, CYS-
167, ARG-182, PRO-218,
SER-219

10 Sunitinib -5.15 169.06 TYR-127, ALA-134, HIS-

136, ILE-161, CYS-167,
GLY-217, PRO-218, LYS-
220

Through docking visualization, we observed that anhydrogossypol interacted with

several interacting residues (Figure 4). According to prior studies, TYR-127, TYR-
165, and CYS-167 were found as highly conserved residues which play crucial roles in
DNA base stabilization, substrate recognition and DNA damage discrimination (Chen
et al., 2008). In addition, ARG-182 residue has a function in stabilizing the transition
state and reaction geometry by interacting with active-site water and DNA phosphate
backbone (Lau et al., 2000). Taken together, the engagement of these conserved and
catalytically relevant residues suggests that anhydrogossypol may interfere with MPG-

mediated DNA repair by stabilizing within the active-site environment.
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Figure 4. Gossypol and its derivatives binding possibilities with MPG structure, (A) GP, (B)
6-MGP, (C) HGP, (D) DMGP, (E) 6-MHGP, (F) 6-DHMGP, (G) AHGP, (H) APGP,
(I) GPO, and (J) Sunitinib (positive control).
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4. CONCLUSION AND RECOMMENDATIONS

4.1 Conclusion

This study used an integrated computational approach to predict the anticancer potential
of gossypol and its derivatives and to identify their cancer target proteins. Several derivatives,
particularly anhydrogossypol and gossypolone, demonstrated improved drug-likeness,
favorable predicted anticancer activity, and strong binding affinity toward DNA-3-
methyladenine glycosylase (MPG). Molecular docking revealed interactions with conserved
and functionally important residues involved in substrate recognition and catalytic foster,
including TYR-127, TYR-165, CYS-167, and ARG-182. These findings highlight that
gossypol derivatives may exert anticancer effects by modulation MPG-mediated DNA repair
pathways.

4.2 Recommendations
Further validation through in vitro and in vivo studies is necessary to confirm MPG

inhibition and anticancer efficacy of the identified lead compounds. Enzymatic assays, cellular
DNA damage analyses, and mutational studies targeting key residues are strongly
recommended. Additionally, combination strategies involving MPG downregulation and

DNA-damaging agents should be explored to enhance therapeutic effectiveness.
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